OnQ Blog

Benchmark global study proves 5G performance, coverage and power-efficiency

Oct 23, 2019

Qualcomm products mentioned within this post are offered by Qualcomm Technologies, Inc. and/or its subsidiaries.

Signals Research Group's 5G Benchmark study

Download the full SRG study


The year 2019 will go down as “the year of 5G.” It has been an exciting seven-month non-stop run since the first 5G launch with over 30 commercial network deployments and more than 40 manufacturers announcing or commercializing 5G devices worldwide – and Qualcomm is at the heart of this expansion.

As this next-generation wireless technology proliferates around the globe – and as a leader in the 5G space – we felt the need to put real-world 5G benefits to the test and take a deeper dive into its performance. Therefore, we commissioned a comprehensive global study from Signals Research Group (SRG), one of the most highly regarded wireless analyst firms with deep expertise in cellular performance benchmarking.

Signals Research Group’s 5G benchmark study presentation

Download the presentation


SRG collected thousands of gigabytes of test data from mobile networks in South Korea, the U.K., Switzerland, and various U.S. cities using commercially available 5G devices powered by Qualcomm Snapdragon Mobile Platforms. The analysis took weeks involving hundreds of parameters.

Following is a summarization of the key findings from the SRG study:

1. 5G doubled average capacity and achieved 10x peak performance gains over 4G LTE

Despite testing multiple sub-6 GHz and millimeter wave (mmWave) networks across Asia, Europe, and North America, results from the study show a common theme: 5G networks provide important capacity and performance enhancements to existing networks.

Figure 1

Figure 1 summarizes data rates results observed on SKT, EE, Swisscom and Verizon networks. The average capacity gains observed was at least 2x compared to existing LTE networks. Peak performance gains topped 10x.

The study characterized performance based on some walk testing and drive testing. For example, SRG observed an average of 220 Mbps during a walk test in central London using a sub-6 GHz network. Meanwhile, the median 5G speed observed in downtown Minneapolis on Verizon’s mmWave network was 383 Mbps with peak speeds of 1.6 Gbps. This result is based on SRG’s testing immediately following Verizon’s launch in April. Recent testing, outside of this study, showed further performance enhancements since then.

The substantive increase in capacity that 5G delivers is transformative. It means providing a better experience not only to those who use 5G smartphones, but to all users on the network. The increased capacity allows for lower cost per bit, so operators can offer unlimited data plans even as data consumption constantly increases.

2. mmWave is more resilient than generally perceived

SRG’s study debunks various misconceptions about mmWave coverage and performance. These misconceptions are a product of the complexity in understanding mmWave behavior and characteristics, combined with speculative statements and anecdotal observations by testers relying solely on the 5G icon indicator on their smartphone and speed test applications.

The study proved 5G mmWave operating in non-line-of-sight scenarios. It showed that mmWave signals can reflect off buildings and provide enough signal strength to sustain a mobile data connection. Additionally, reflections can extend coverage around corners and even behind buildings that lie between the cell site and the smartphone.

Figure 2

For instance, Figure 2 highlights SRG’s remarkable findings with a test device facing the opposite direction of the 5G mmWave radio, showing how a reflected signal from two blocks away delivered data speeds of 200 Mbps – a result higher than typical LTE speeds.

Also, while anecdotal testers blamed mmWave propagation challenges for apparent losses in 5G phone connections, the study concluded that quite often, the absence of the 5G icon is due to other factors involving the LTE network. Many times, a lost 5G link occurred when the smartphone is handed over to a new LTE cell site that isn’t paired with (i.e., not aware of) the 5G site – even if the 5G mmWave signal was still strong enough to sustain a connection. This is completely unrelated to the fundamentals of mmWave spectrum and can be addressed with network optimization.

3. mmWave indoor deployments show favorable results

Recently, Verizon announced 5G coverage in 13 NFL stadiums across the United States. Large venues, such as stadiums, tradeshow halls and transportation stations, are some of the most challenging environments in which to deliver good mobile connectivity. When these venues are packed, and crowds of users try to connect at the same time, it is a daunting challenge for operators to provide enough capacity to sustain reasonable performance. 5G mmWave brings the massive capacity that can satisfy such data demand.

As part of its study, SRG tested U.S. Bank Stadium – home of the Minnesota Vikings. With only 13 5G sites, Verizon was able to provide coverage to virtually all seats (66,000+) with good-to-great signal connectivity. The study showed that mmWave signals went further to provide coverage in concessions behind the stadium seats – an area where the network was not designed to provide coverage.

Figure 3

As shown in Figure 3, in addition to ubiquitous coverage within the seating area, average data speed was 1.66 Gbps with peak data rates at 1.95 Gbps.

4. 5G delivers superior user-experiences, especially in capacity-constrained scenarios

SRG performed several consumer-focused test scenarios which included:

  • YouTube streaming
  • Netflix movie download for offline watching
  • Google Play Store download (downloading a mobile game - ~400 MB)
  • Google Drive download (downloading large file)

Figure 4 below summarizes the stellar performance and better user experience observed with 5G device compared to LTE smartphone:

Figure 4

In the streaming case, the 5G smartphone retained 1080p video resolution (max. available by the service) while LTE smartphone started with 480p before dropping to 360p due to network loading. Although neither video stalled during playback, LTE smartphone took 2.4x longer to start playing a lower resolution video.

5G also enhanced user experience in downloading content using popular applications such as Google Play, Google Drive, and Netflix. On average, downloading a game, movie or other content took 5x longer on LTE than it did with 5G.

5. 5G can be more energy efficient than LTE, especially when supporting high bandwidth applications

There is a perception that 5G with its multi-gigabit speeds can quickly drain the battery compared to LTE; however, according to the study, this is not the reality. In the study, SRG measured how 5G impacts the battery life and compared it to LTE. The study concluded that while the impact on battery life is very nuanced and complex between the two technologies, 5G smartphones can deliver all-day battery life. In fact, playing solitaire for 30 minutes in a phone can be the equivalent of downloading more than 30 GB of data with a good 5G connection.

In good radio conditions and for large amounts of data, 5G is more energy-efficient than LTE. Although the current drain is higher in 5G, the increased usage rate can be offset by the higher data speeds. Figure 5 below explains this.

Results in Figure 5 above show that 5G can download considerably more data than LTE with a 4400 mAh battery. The test is in a scenario in which users make voice calls, activate display, download data contents and more. Even in the scenario with assumptions most favorable to LTE, the total estimated battery life for the 5G device was at least 14 hours; long enough for regular workday.


Real-world results from rigorous testing show the reality of 5G performance and its benefits, and I’ve barely scratched the surface of the findings of SRG’s 5G benchmark study. I urge you to have a look at it.

In summary:

  • 5G delivers substantive network capacity enhancements and achieves substantially higher data rates than LTE; 2x -10x gains observed
  • mmWave can provide robust coverage beyond what’s generally perceived and offers massive capacity increases
  • mmWave proves to deliver the wireless capacity required in crowded venues such as stadiums; indoor deployments are underway
  • 5G provides significant improvement to user-experience; On average 5x faster download time and better video streaming experience
  • 5G can be more energy efficient than LTE and support all-day battery life

If you want to dive deeper into the SRG study, we encourage you to download the study from the link above.  


Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

Engage with us on


Opinions expressed in the content posted here are the personal opinions of the original authors, and do not necessarily reflect those of Qualcomm Incorporated or its subsidiaries ("Qualcomm"). Qualcomm products mentioned within this post are offered by Qualcomm Technologies, Inc. and/or its subsidiaries. The content is provided for informational purposes only and is not meant to be an endorsement or representation by Qualcomm or any other party. This site may also provide links or references to non-Qualcomm sites and resources. Qualcomm makes no representations, warranties, or other commitments whatsoever about any non-Qualcomm sites or third-party resources that may be referenced, accessible from, or linked to this site.

Mohammed Al Khairy

Staff Manager, Product Marketing, Qualcomm Technologies