OnQ Blog

Introducing Qualcomm Zeroth Processors: Brain-Inspired Computing

Oct 10, 2013

Qualcomm products mentioned within this post are offered by Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm’s technologies are designed from the ground-up with speed and power efficiency in mind. This way, devices that use our products can run smoothly and maximize battery life driven experiences. As mobile computing becomes increasingly pervasive, so do our expectations of the devices we use and interact with in our everyday lives. We want these devices to be smarter, anticipate our needs, and share our perception of the world so we can interact with them more naturally. The computational complexity of achieving these goals using traditional computing architectures is quite challenging, particularly in a power- and size-constrained environment vs. in the cloud and using supercomputers.

For the past few years our Research and Development teams have been working on a new computer architecture that breaks the traditional mold. We wanted to create a new computer processor that mimics the human brain and nervous system so devices can have embedded cognition driven by brain inspired computing—this is Qualcomm Zeroth processing.

We have three main goals for Qualcomm Zeroth processors:

1. Biologically Inspired Learning

We want Qualcomm Zeroth products to not only mimic human-like perception but also have the ability to learn how biological brains do.  Instead of preprogramming behaviors and outcomes with a lot of code, we’ve developed a suite of software tools that enable devices to learn as they go and get feedback from their environment.

In the video below, we outfitted a robot with a Qualcomm Zeroth processor and placed it in an environment with colored boxes. We were then able to teach it to visit white boxes only. We did this through dopaminergic-based learning, a.k.a. positive reinforcement—not by programming lines of code.

2. Enable Devices To See and Perceive the World as Humans Do

Another major pillar of Zeroth processor function is striving to replicate the efficiency with which our senses and our brain communicate information. Neuroscientists have created mathematical models that accurately characterize biological neuron behavior when they are sending, receiving or processing information. Neurons send precisely timed electrical pulses referred to as “spikes” only when a certain voltage threshold in a biological cell’s membrane is reached. These spiking neural networks (SNN) encode and transmit data very efficiently in both how our senses gather information from the environment and then how our brain processes and fuses all of it together.

3. Creation and definition of an Neural Processing Unit—NPU

The final goal of Qualcomm Zeroth is to create, define and standardize this new processing architecture—we call it a Neural Processing Unit (NPU.) We envision NPU’s in a variety of different devices, but also able to live side-by-side in future system-on-chips. This way you can develop programs using traditional programing languages, or tap into the NPU to train the device for human-like interaction and behavior.   

We’re looking forward on sharing more information; check back here for more developments on Qualcomm Zeroth processors.

Engage with us on

and

Opinions expressed in the content posted here are the personal opinions of the original authors, and do not necessarily reflect those of Qualcomm Incorporated or its subsidiaries ("Qualcomm"). Qualcomm products mentioned within this post are offered by Qualcomm Technologies, Inc. and/or its subsidiaries. The content is provided for informational purposes only and is not meant to be an endorsement or representation by Qualcomm or any other party. This site may also provide links or references to non-Qualcomm sites and resources. Qualcomm makes no representations, warranties, or other commitments whatsoever about any non-Qualcomm sites or third-party resources that may be referenced, accessible from, or linked to this site.

Related News

©2020 Qualcomm Technologies, Inc. and/or its affiliated companies.

References to "Qualcomm" may mean Qualcomm Incorporated, or subsidiaries or business units within the Qualcomm corporate structure, as applicable.

Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its products and services businesses. Qualcomm products referenced on this page are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Materials that are as of a specific date, including but not limited to press releases, presentations, blog posts and webcasts, may have been superseded by subsequent events or disclosures.

Nothing in these materials is an offer to sell any of the components or devices referenced herein.