Vision-controlled Flying Robots
From Frame-based to Event-based Vision

Davide Scaramuzza

- Website: http://rpg.ifi.uzh.ch/
- Software & Datasets: http://rpg.ifi.uzh.ch/software_datasets.html
- YouTube: https://www.youtube.com/user/ailabRPG/videos
- Publications: http://rpg.ifi.uzh.ch/publications.html
Research Background

Computer Vision
- Visual Odometry and SLAM
- Sensor fusion
- Camera calibration

Autonomous Robot Navigation
- Self driving cars
- Micro Flying Robots

[JFR’10, AURO’11, RAM’14, JFR’15]

[ICCV’09, CVPR’10, JFR’11, IJCV’11]
My Research Group

http://rpg.ifi.uzh.ch
Current Research

Visual-Inertial State Estimation
[T-RO’08, IJCV’11, PAMI’13, RSS’15]

Event-based Vision for Agile Flight
[IROS’3, ICRA’14, RSS’15]

Probabilistic, Dense Reconstruction
[ICRA’14, JFR’15]

Autonomous Navigation of Flying Robots
[AURO’12, RAM’14, JFR’15]

Event-based Vision for Agile Flight
[IROS’3, ICRA’14, RSS’15]
Other research topics (not shown in this presentation)

Aerial-guided navigation of a Ground Robot among Movable Obstacles
[IROS'13, SSRR'14, JFR'15]
Other research topics (not shown in this presentation)

Aerial-guided navigation of a Ground Robot among Movable Obstacles
[IROS’13, SSRR’14, JFR’15]
Other research topics (not shown in this presentation)

Autonomous trail following in the forests using Deep Learning
[Submitted to IEEE RA-L]
Today’s Applications
Today’s Applications of MAVs

Transportation

Search and rescue

Aerial photography

Inspection

Law enforcement

Agriculture
How to fly a drone

- **Remote control**
 - Requires line of sight or communication link
 - Requires skilled pilots

- **GPS-based navigation**
 - Doesn’t work indoors
 - Can be unreliable outdoors

Drone crash during soccer match, Brasilia, 2013

Interior of an earthquake-damaged building in Japan
Problems of GPS

- Does not work indoors
- Even outdoors it is not a reliable service
 - Satellite coverage
 - Multipath problem
Why do we need autonomy?
Autonomous Navigation is crucial for:

Search and Rescue

Remote Inspection
How do we Localize without GPS?

Mellinger, Michael, Kumar

Fontana, Faessler, Scaramuzza
How do we Localize without GPS?

This robot is «blind»
How do we Localize without GPS?

This robot is «blind».
How do we Localize without GPS?

This robot is «blind»

This robot can «see»

Motion capture system

Markers
Autonomous Vision-based Navigation in GPS-denied Environments

Problems with Vision-controlled MAVs

Quadrotors have the potential to navigate quickly but...

- Autonomous operation is currently restricted to controlled environments
- Vision-based maneuvers still slow and inaccurate compared to VICON

Why?

- Perception algorithms are mature but not robust
 - Unlike lasers and Vicon, localization accuracy depends on depth & texture!
 - Algorithms and sensors have big latencies (50-200 ms)
 - Sparse models instead of dense environment models
 - Control & perception have been mostly considered separately
Outline

- Visual-inertial state estimation
- From sparse to dense models
- Active vision and control
- Event-based Vision for agile flight
Vision-based, GPS-denied Navigation
Visual Odometry

\[T_{k,k-1} = \arg \min_{T} \int_{R} \rho I_k \left(\pi (T \cdot \pi^{-1}(u, d_u)) \right) - I_{k-1}(u) \, du \]

Keyframe-based Visual Odometry

PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’08]

Feature-based vs. Direct Methods

Feature-based (e.g., PTAM, Klein’08)
1. Feature extraction
2. Feature matching
3. RANSAC + P3P
4. Reprojection error minimization

\[T_{k,k-1} = \arg\min_T \sum_i \|u'_i - \pi(p_i)\|^2 \]

Direct approaches (e.g., Meilland’13)
1. Minimize photometric error

\[T_{k,k-1} = \arg\min_T \sum_i \|I_k(u'_i) - I_{k-1}(u_i)\|^2 \]

[Soatto’95, Meilland and Comport, IROS 2013], DVO [Kerl et al., ICRA 2013], DTAM [Newcombe et al., ICCV ‘11], ...
Feature-based vs. Direct Methods

Feature-based (e.g., PTAM, Klein’08)

1. Feature extraction
2. Feature matching
3. RANSAC + P3P
4. Reprojection error minimization

\[T_{k,k-1} = \arg\min_T \sum_i \| u'_i - \pi(p_i) \|^2 \]

Direct approaches

1. Minimize photometric error

\[T_{k,k-1} = \arg\min_T \sum_i \| I_k(u'_i) - I_{k-1}(u_i) \|^2 \]

\[\checkmark \quad \text{Every pixel in the image can be exploited (precision, robustness)} \]

\[\checkmark \quad \text{Increasing camera frame-rate reduces computational cost per frame} \]

\[\times \quad \text{Limited to small frame-to-frame motion} \]

\[\checkmark \quad \text{Large frame-to-frame motions} \]

\[\times \quad \text{Slow (20-30 Hz) due to costly feature extraction and matching} \]

\[\times \quad \text{Not robust to high-frequency and repetitive texture} \]

Large frame-to-frame motions

Slow (20-30 Hz) due to costly feature extraction and matching

Not robust to high-frequency and repetitive texture

Every pixel in the image can be exploited (precision, robustness)

Increasing camera frame-rate reduces computational cost per frame

Limited to small frame-to-frame motion
Feature-based vs. Direct Methods

Feature-based (e.g., PTAM, Klein’08)

1. Feature extraction
2. Feature matching
3. RANSAC
4. Reprojection error minimization

\[T_{k,k-1} = \arg \min \sum_i \| I_k(u'_i) - I_{k-1}(u_i) \|^2 \]

Direct approaches

\[T_{k,k-1} = \arg \min \sum_i \| I_k(u'_i) - I_{k-1}(u_i) \|^2 \]

\[\times \text{ Slow (20-30 Hz) due to costly feature extraction and matching} \]

\[\checkmark \text{ Large frame-to-frame motions} \]

- Large frame-to-frame motions
- Slow (20-30 Hz) due to costly feature extraction and matching
- Not robust to high-frequency and repetitive texture
- Every pixel in the image can be exploited (precision, robustness)
- Increasing camera frame-rate reduces computational cost per frame
- Limited to small frame-to-frame motion

Our solution:

SVO: Semi-direct Visual Odometry [ICRA’14]

Combines feature-based and direct methods

\[T_{k,k-1} = \arg \min \sum_i \| I_k(u'_i) - I_{k-1}(u_i) \|^2 \]

\[\checkmark \text{ Increasing camera frame-rate reduces computational cost per frame} \]

\[\times \text{ Limited to small frame-to-frame motion} \]
SVO: Semi-Direct Visual Odometry [ICRA’14]

Direct
• Frame-to-frame motion estimation

Feature-based
• Frame-to-Keyframe pose refinement

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]
SVO: Semi-Direct Visual Odometry [ICRA’14]

Direct
• Frame-to-frame motion estimation

Feature-based
• Frame-to-keyframe pose refinement

Mapping
- Feature extraction only for every keyframe
- Probabilistic depth estimation of 3D points

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]
SVO: Experiments in real-world environments

Video:
https://www.youtube.com/watch?v=2YnIMfw6bJY

Robust to fast and abrupt motions

Realtime Camera at 70fps

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]
Probabilistic Depth Estimation in SVO

Depth-Filter:

- Depth-filter for every new feature
- Recursive Bayesian depth estimation
- Epipolar search using ZMSSD

Measurement Likelihood models outliers:

\[p(\tilde{d}_i^k | d_i, \rho_i) = \rho_i \mathcal{N}(\tilde{d}_i^k | d_i, \tau_i^2) + (1 - \rho_i) \mathcal{U}(\tilde{d}_i^k | d_i^\text{min}, d_i^\text{max}) \]

- 2-Dimensional distribution: Depth \(d \) and inliner ratio \(\rho \)
- Mixture of Gaussian + Uniform
- Inverse depth

Probabilistic Depth Estimation in SVO

- Based on the model by [Vogiatzis & Hernandez, 2011] but with inverse depth

\[p(\hat{d}, \rho | d_{r+1}, \ldots, d_k) \propto p(\hat{d}, \rho) \prod_k p(d_k | \hat{d}, \rho) \]

(1)

\[p(d_k | \hat{d}, \rho) = \rho \mathcal{N}(d_k | \hat{d}, \tau_k^2) + (1 - \rho) \mathcal{U}(d_k | d_{\text{min}}, d_{\text{max}}) \]

(2)

- The posterior in (1) can be approximated by

\[q(\hat{d}, \rho | a_k, b_k, \mu_k, \sigma_k^2) = \text{Beta}(\rho | a_k, b_k) \mathcal{N}(\hat{d} | \mu_k, \sigma_k^2) \]

(3)

The parametric model \(\{a_k, b_k, \mu_k, \sigma_k^2\} \) describes the pixel depth at time \(k \).
Probabilistic Depth Estimation in SVO

Processing Times of SVO

Laptop (Intel i7, 2.8 GHz)

400 frames per second

Embedded ARM Cortex-A9, 1.7 GHz

Up to 70 frames per second

Source Code

- Open Source available at: github.com/uzh-rpg/rpg_svo
- Works with and without ROS
- Closed-Source professional edition available for companies
Absolute Scale Estimation
Scale Ambiguity

- With a single camera, we only know the relative scale.
- No information about the *metric scale*.
Absolute Scale Estimation

- The absolute pose x is known up to a scale s, thus
 \[x = s\hat{x} \]

- IMU provides accelerations, thus
 \[v = v_0 + \int a(t) dt \]

- By derivating the first one and equating them
 \[s\hat{x} = v_0 + \int a(t) dt \]

- As shown in [Martinelli, TRO’12], for 6DOF, both s and v_0 can be determined in closed form from a single feature observation and 3 views

The scale and velocity can then be tracked using

- **Filter-based approaches**
 - **Losely-coupled** approaches [Lynen et al., IROS’13]
 - **Tightly-coupled** approached (e.g., Google TANGO) [Mourikis & Roumeliotis, TRO’12]

- **Optimization-based approaches** [Leutenegger, RSS’13], [Forster, Scaramuzza, RSS’14]
Visual-Inertial Fusion [RSS’15]

- Fusion is solved as a non-linear optimization problem (no Kalman filter):
- Increased accuracy over filtering methods

\[
\sum_{(i,j) \in \mathcal{K}_k} \| r_{L_{ij}} \|_{\Sigma_{ij}}^2 + \sum_{i \in \mathcal{K}_k} \sum_{l \in \mathcal{C}_i} \| r_{C_{il}} \|_{\Sigma_{C}}^2
\]

IMU residuals Reprojection residuals

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]
Comparison with Previous Works

Video: https://www.youtube.com/watch?v=CsJkci5lfco

5x

Accuracy: 0.1% of the travel distance

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]
Integration on a Quadrotor Platform
Quadrotor System

Odroid U3 Computer
- Quad Core Odroid (ARM Cortex A-9) used in Samsung Galaxy S4 phones
- Runs Linux Ubuntu and ROS

450 grams
Flight Results: Hovering

RMS error: 5 mm, height: 1.5 m – Down-looking camera

Flight Results: Indoor, aggressive flight

Speed: 4 m/s, height: 1.5 m – Down-looking camera

Video: https://www.youtube.com/watch?v=l3TCiCe_T3g

Autonomous Vision-based Flight over Mockup Disaster Zone

Firefighters’ training area, Zurich

Video: https://www.youtube.com/watch?v=3mNY9-DSUDk

Probabilistic Depth Estimation

Depth-Filter:

- **Depth Filter** for every feature
- **Recursive Bayesian** depth estimation

Mixture of Gaussian + Uniform distribution

\[
p(\tilde{d}_i^k | d_i, \rho_i) = \rho_i \mathcal{N}(\tilde{d}_i^k | d_i, \tau_i^2) + (1 - \rho_i) \mathcal{U}(\tilde{d}_i^k | d_i^{\text{min}}, d_i^{\text{max}})
\]

[Forster, Pizzoli, Scaramuzza, SVO: Semi Direct Visual Odometry, IEEE ICRA'14]
Robustness to Dynamic Objects and Occlusions

- Depth uncertainty is crucial for safety and robustness
- Outliers are caused by wrong data association (e.g., moving objects, distortions)
- Probabilistic depth estimation models outliers

Video: [YouTube](https://www.youtube.com/watch?v=LssgKdDz5z0)

Failure Recovery [ICRA’15]

• Loss of GPS
• From aggressive flight
• Visual tracking

Article: http://spectrum.ieee.org/automaton/robotics/aerial-robots/aggressive-flight-quadrotor-recovery

Faessler, Fontana, Forster, Scaramuzza, Automatic Re-Initialization and Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor, ICRA’15. **Featured in IEEE Spectrum.**
Recovery Stages

Throw

IMU
Recovery Stages

Attitude Control

IMU
Recovery Stages

Attitude + Height Control

IMU
Distance Sensor
Recovery Stages

Break Velocity

IMU
Camera
From Sparse to Dense 3D Models

[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA'14]
Dense Reconstruction in Real-Time

Goal: estimate depth of every pixel in real time

 Pros:
 - Advantageous for environment interaction (e.g., collision avoidance, landing, grasping, industrial inspection, etc)
 - Higher position accuracy

 Cons: computationally expensive (requires GPU)
Dense Reconstruction Pipeline

- **Local methods**
 - Estimate depth for every pixel independently using **photometric cost aggregation**

- **Global methods**
 - Refine the depth surface as a whole by enforcing smoothness constraint ("Regularization")

\[
E(d) = E_d(d) + \lambda E_s(d)
\]

- Data term
- Regularization term: penalizes non-smooth surfaces

[Newcombe et al. 2011]
REMODE: Probabilistic Monocular Dense Reconstruction [ICRA’14]

- Pose estimation done by SVO
- **Track independently** every pixel using the same recursive Bayesian depth estimation of SVO

\[
p(d_i^k | d_i, \rho_i) = \rho_i N(d_i^k | d_i, \tau_i^2) + (1 - \rho_i) U(d_i^k | d_i^{\min}, d_i^{\max})
\]

- A **regularized depth map** \(F(u)\) is computed from the noisy depth map \(D(u)\) as

\[
\min_F \int_{\Omega} \left\{ G(u) \| \nabla F(u) \|_\epsilon + \lambda \| F(u) - D(u) \|_1 \right\} du
\]

where

\[
G(u) = \mathbb{E}_\rho[q](u) \frac{\sigma^2(u)}{\sigma^2_{\max}} + \left\{ 1 - \mathbb{E}_\rho[q](u) \right\}
\]

Minimization is done using [Chambolle & Pock, 2011]

[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA’14]
REMODE: Probabilistic Monocular Dense Reconstruction [ICRA’14]

Running at 50 Hz on GPU on a Lenovo W530, i7

Video: [YouTube](https://www.youtube.com/watch?v=QTKd5UWCG0Q)

Monocular dense reconstruction in real-time from a hand-held camera

Open source

[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA’14]
Autonouis, Flying 3D Scanning [JFR’15]

- Sensing, control, state estimation run onboard at 50 Hz (Odroid U3, ARM Cortex A9)
- Dense reconstruction runs live on video streamed to laptop (Lenovo W530, i7)

Video: [YouTube](https://www.youtube.com/watch?v=7-kPiWaFYAc)

Autonomous, Flying 3D Scanning [JFR’15]

- Sensing, control, state estimation run onboard at 50 Hz (Odroid U3, ARM Cortex A9)
- Dense reconstruction runs live on video streamed to laptop (Lenovo W530, i7)

Applications: Industrial Inspection

Industrial collaboration with Parrot-SenseFly targets:

- Real-time dense reconstruction with 5 cameras
- Vision-based navigation
- Dense 3D mapping in real time

Video: https://www.youtube.com/watch?v=gr00Bf0AP1k

Automotive: 4 fisheye Cameras

Video: https://www.youtube.com/watch?v=gr00Bf0AP1k

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]

Scales easily to multiple cameras
Inspection of CERN tunnels

- **Problem**: inspection of CERN tunnels currently done by technicians, who expend much of their annual quota of safe radiation dose

- **Goal**: inspection of LHC tunnel with autonomous drone

- **Challenge**: low illumination, cluttered environment
Try our iPhone App: 3DAround
Appearance-based Active Vision
Active Dense Reconstruction [RSS’14]

What’s the **optimal motion** to **reconstruct a scene** from a **monocular camera** attached to a **flying robot**?

Forster, Pizzoli, Scaramuzza, Appearance-based Active, Monocular, Dense Reconstruction for Micro Aerial Vehicles, RSS 2014.
Let’s have a look at **passive** dense reconstruction with **hand-held cameras**

REMODE [Pizzoli, Forster, Scaramuzza 2014]

Monocular dense reconstruction in real-time from a hand-held camera
Let’s have a look at **passive** dense reconstruction with **hand-held cameras**

DTAM [Newcombe et al., ICCV 2011]

Why is the user always moving the camera in a circle?

How should a robot-mounted camera move to allow optimal dense 3D reconstruction?
Related Work on Active Perception

- View Path Planning, Next-Best-View [Bajcsy’88, Blake’88]
- Active SLAM and Exploration [Davison & Murray’02, Stachniss’05, Vidal-Calleja’10, Dissanayake’12]

Limitation:

State-of-the-art approaches retain only geometric information while discarding the photometric information (i.e., texture).

Our solution:

Maximize the expected information gain (i.e., map accuracy), on the basis of scene structure and photometric information (i.e., texture).
Photometric Disparity Uncertainty

The matching uncertainty can be modeled as a bivariate Gaussian distribution with covariance [Matthies, CVPR’88]

\[
\Sigma = 2\sigma_i^2 \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}^{-1}
\]

where \(\sigma_i^2 = \text{Image noise}, \)

\[
I_x = \sum_P \left[\frac{\partial I}{\partial x} \right], \quad I_y = \sum_P \left[\frac{\partial I}{\partial y} \right]
\]

Disparity uncertainty along epipolar line \(l \)

\[
\sigma_p = f(T_{r,k}, \Sigma)
\]

Patch appearance is predicted using reference patch

Forster, Pizzoli, Scaramuzza, Appearance-based Active, Monocular, Dense Reconstruction for Micro Aerial Vehicles, RSS 2014.
Information gain as a function of the Texture

Information Gain \[I_{k,k+1} = \mathcal{H}_k - \mathcal{H}_{k+1} \]
where \[\mathcal{H}_{k+1} = \frac{1}{2} \sum \ln(2\pi e \sigma^2) \]

Forster, Pizzoli, Scaramuzza, Appearance-based Active, Monocular, Dense Reconstruction for Micro Aerial Vehicles, RSS 2014.
Receding Horizon Control – Next Best N Views

- The “best” trajectory is selected as the one that maximizes the gain in information (i.e., the map accuracy) over the next robot poses:

\[\phi_k = \arg \max_{\phi} \sum_{i=k}^{k+N} J_{i,i+1}(T) \]

- The “next pose” heavily depends on the texture of the environment

Forster, Pizzoli, Scaramuzza, Appearance-based Active, Monocular, Dense Reconstruction for Micro Aerial Vehicles, RSS 2014.
Active Mon. Dense Reconstruction in Real-time [RSS’15]

Information gain for **striped texture**

Forster, Pizzoli, Scaramuzza, Appearance-based Active, Monocular, Dense Reconstruction for Micro Aerial Vehicles, RSS 2014.

Video: https://www.youtube.com/watch?v=uAc1pL_c-zY

Information gain for **isotropic texture**

After 1 iteration After 10 iterations
Autonomous Landing-Spot Detection and Landing [ICRA’15]

Video: https://www.youtube.com/watch?v=phaBKFwfcJ4

Having an **autonomous** landing-spot detection can really help!

The Philae lander while approaching the comet on November 12, 2014
Event-based Vision
for High-Speed Robotics

[IROS’13, ICRA’14, RSS’15]
Open Problems and Challenges with Micro Helicopters

Current flight maneuvers achieved with onboard cameras are still slow compared with those attainable with Motion Capture Systems.
How fast can we go with an onboard camera?

Let’s assume that we have perfect perception.

Can we achieve the same flight performances attainable with motion capture systems or go even faster?
To go faster, we need faster sensors!

- At the current state, the agility of a robot is limited by the latency and temporal discretization of its sensing pipeline.

- Currently, the average robot-vision algorithms have latencies of 50-200 ms. This puts a hard bound on the agility of the platform.
To go faster, we need faster sensors!

- At the current state, the agility of a robot is limited by the latency and temporal discretization of its sensing pipeline.

- Currently, the average robot-vision algorithms have latencies of 50-200 ms. This puts a hard bound on the agility of the platform.

- Can we create low-latency, low-discretization perception architectures?

Yes...

...if we use a camera where pixels do not spike all at the same time

...in a way as we humans do..
Human Vision System

- Retina is ~1000mm2
- 130 million **photoreceptors**
 - 120 mil. rods and 10 mil. cones for color sampling
 - 1.7 million axons
Human Vision System
Dynamic Vision Sensor (DVS)

- **Event-based camera** developed by Tobi Delbruck’s group (ETH & UZH).
- Temporal resolution: 1 μs
- High dynamic range: 120 dB
- Low power: 20 mW
- Cost: 2,500 EUR

Image of the solar eclipse (March’15) captured by a DVS (courtesy of IniLabs)

DARPA project Synapse: 1M neuron, brain-inspired processor: IBM TrueNorth

Camera vs DVS

- A **traditional camera** outputs frames at **fixed time intervals**:

 ![Diagram of traditional camera](image)

- By contrast, a **DVS** outputs **asynchronous events** at **microsecond resolution**. An event is generated each time a single pixel changes value.

 ![Diagram of DVS](image)

\[
\text{event: } \left(t, (x, y), \text{sign} \left(\frac{d}{dt} \log(I_t(x, y)) \right) \right)
\]

\text{sign (+1 or -1)}

Camera vs Dynamic Vision Sensor

Video: http://youtu.be/LauQ6LWTkxM
Application Experiment: Quadrotor Flip (1,200 deg/s)

Video: http://youtu.be/LauQ6LWTkxM

Article: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/dynamic-vision-sensors-enable-high-speed-maneuvers-with-robots

[Mueggler, Huber, Scaramuzza, Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers, IROS’14]
Camera and DVS renderings

Peak Angular Speed:
1,200 deg/s

[Mueggler, Huber, Scaramuzza, Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers, IROS'14]
Frame-based vs Event-based Vision

- Naive solution: **accumulate events** occurred over a certain time interval and adapt *standard* vision algorithms.
 - Drawback: it *increases latency*

- Instead, we want **each single event** to be used *as it comes!*

- Problems
 - DVS output is a sequence of **asynchronous events** rather than a standard image
 - Thus, a **new paradigm shift** is needed to deal with its data
Probabilistic Measurement Model of a DVS

\[p(e_{t,u,v}) \propto \left| \frac{dI(u,v)}{dt} \right| = |\nabla I \cdot \vec{OF}| \]

Example: consider a planar scene with a black to white transition

6DoF Pose-Estimation Results at 1MHz [IROS’14, RSS’15]

[Mueggler, Gallego, Scaramuzza, Continuous-Time Trajectory Estimation for Event-based Vision Sensors, RSS’15]
[Mueggler, Huber, Scaramuzza, Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers, IROS’14]
DAVIS: Dynamic and Active-pixel Vision Sensor

CMOS frames

DVS events

time

DAVIS: Dynamic and Active-pixel Vision Sensor

Possible future computer-vision architectures

Inter-frame, Event-based Pose Estimation [ICRA’14]

Idea: reduce the problem to “localization” wrt the previous CMOS frame.

[Censi & Scaramuzza, Low Latency, Event-based Visual Odometry, ICRA’14]
Event-based Pose Estimation, 1D Example (pure rotation)

$p(\omega \mid \text{events})$

\[y_0(\theta) \quad |\nabla y_0(\theta)| \]

\[\theta \quad \text{pixel} \]

\[t = 0 \]

\[\hat{\omega} \quad \text{estimated velocity} \]

\[\omega = 0 \]
Event-based 6DoF Pose Estimation Results

RED: observed events;
GREEN, BLUE: reprojected events (ON, OFF)

Estimated 6DoF pose

[Censi & Scaramuzza, Low Latency, Event-based Visual Odometry, ICRA’14]
Conclusions and home messages

- Combination of **feature-based and direct methods** yield high frame rate and robustness.

- Recursive **Bayesian depth estimation** allows adaptively choosing the baseline of monocular systems.

- **Pre-integrated IMU factors** allows high-speed visual inertial fusion.

- Modeling depth uncertainty in both sparse and dense methods as a mixture of uniform and Gaussian distribution yield:
 - Almost no outliers
 - Robustness to dynamic objects

- **DVS & DAVIS**: **revolutionary sensors** for vision and robotics:
 1. **low-latency** (~1 micro-second)
 2. **high-dynamic range** (120 dB instead 60 dB)
 3. Very **low bandwidth** (only intensity changes are transmitted)
Open Source Software

- My lab GitHub repository: github.com/uzh-rpg
 - SVO: Semi-direct Visual Odometry
 - REMODE: Regularized, Probabilistic, Monocular Dense Reconstruction
 - DVS: ROS driver and calibration tools for single and stereo event cameras
- BORG lab repository
 - GTSAM (iSAM) with pre-integrated IMU factors
References on Event Vision

A. Censi, D. Scaramuzza,
Low-Latency Event-Based Visual Odometry
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014.
PDF

E. Mueggler, B. Huber, D. Scaramuzza
Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers
PDF YouTube

E. Mueggler, G. Gallego, D. Scaramuzza
Continuous-Time Trajectory Estimation for Event-based Vision Sensors
PDF

Mueggler, C. Forster, N. Baumli, G. Gallego, D. Scaramuzza
Lifetime Estimation of Events from Dynamic Vision Sensors
PDF

Article: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/dynamic-vision-sensors-enable-high-speed-maneuvers-with-robots

Article: http://newsoffice.mit.edu/2014/think-fast-robot-0530
Resources

- Website: http://rpg.ifi.uzh.ch/

- Software & Datasets: http://rpg.ifi.uzh.ch/software_datasets.html

- YouTube: https://www.youtube.com/user/ailabRPG/videos

- Publications: http://rpg.ifi.uzh.ch/publications.html
Thanks! Questions?

Funding

ROBOTICS & PERCEPTION GROUP
rpg.ifi.uzh.ch