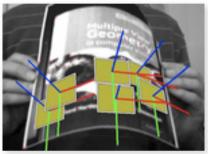
Computer Vision for Augmented Reality

Vincent Lepetit

CVLab – Ecole Polytechnique Fédérale de Lausanne

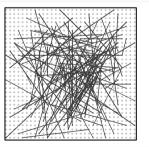
Switzerland

Ferns [CVPR'07] classification for fast keypoint recognition



Gepard [CVPR'09] real-time learning of patch rectification

DOT [CVPR'10] dense descriptor for objet detection



BRIEF [ECCV'10] very fast feature point descriptor

Ferns [CVPR'07] classification for fast keypoint recognition

Registered image(s) of the object to detect

Keypoint detection (Harris, extrema of Laplacian, affine regions,...);

Registered image(s) of the object to detect

Keypoint detection (Harris, extrema of Laplacian, affine regions,...);

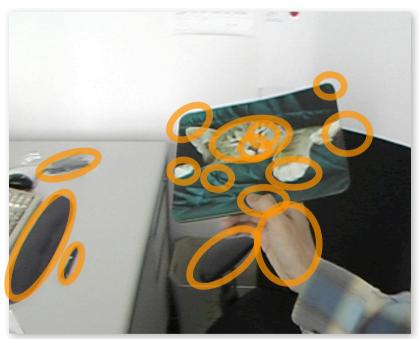
Registered image(s) of the object to detect



Input image

Keypoint detection (Harris, extrema of Laplacian, affine regions,...);

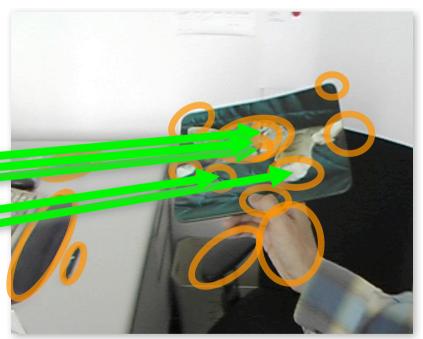
Registered image(s) of the object to detect



Input image

Keypoint detection (Harris, extrema of Laplacian, affine regions,...); Keypoint recognition (descriptor matching or classification);

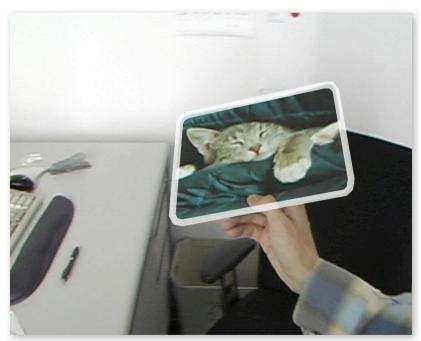
Registered image(s) of the object to detect



Input image

Keypoint detection (Harris, extrema of Laplacian, affine regions,...); Keypoint recognition (descriptor matching or classification); Robust pose estimation (RANSAC+P3P, ...).

Registered image(s) of the object to detect

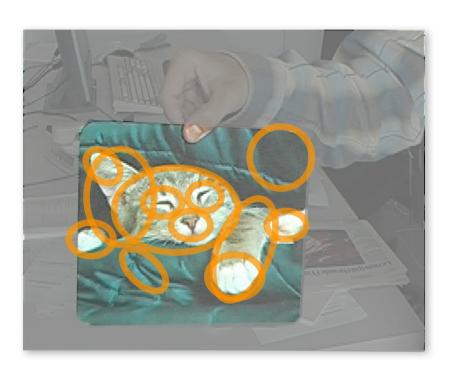


Input image

Standard Approach to Keypoint-Based Object Detection

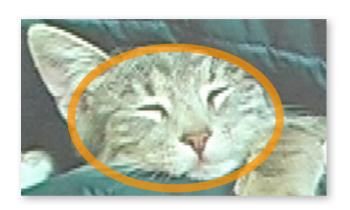
Standard Approach

Step 1: Detection invariant to scale and rotation, or perspective transformation





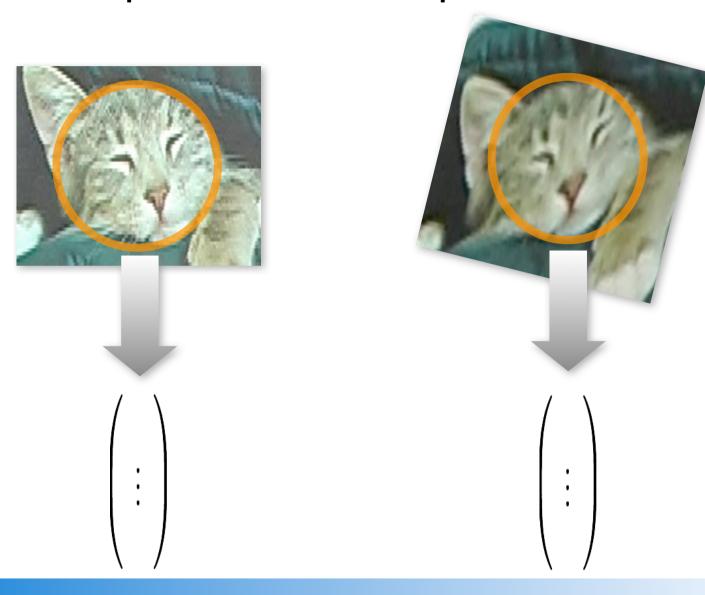
Standard Approach Step 2: Patch rectification



Standard Approach Step 2: Patch rectification

Standard Approach Step 3: Build description vector

Standard Approach Step 3: Build description vector

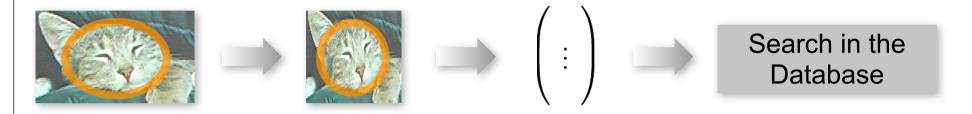


Standard Approach
Step 4: Match description vectors

Standard Approach
Step 4: Match description vectors

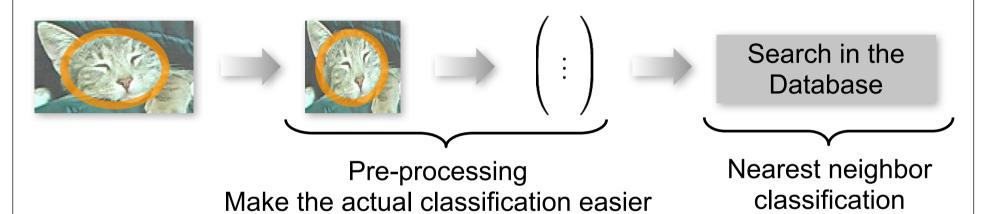
Keypoint Recognition

The standard approach is a particular case of classification:



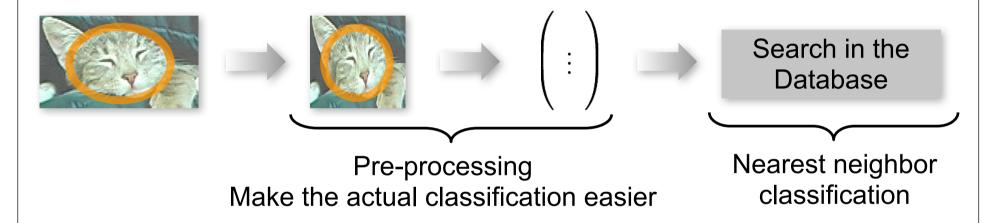
Keypoint Recognition

The standard approach is a particular case of classification:



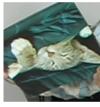
Keypoint Recognition

The standard approach is a particular case of classification:



One class per keypoint: the set of the keypoint's possible appearances under various perspective, lighting, noise...

Training phase



Classifier

Used at run-time to recognize the keypoints

LE MONDE DES MONTAGNES

Camille Scherrer - ECAL / University of art and design Lausanne Diplome Project - Media&Interaction design / 2008

Patch Classification with Ferns

If patch can be represented by a set of image features $\{f_i\}$:

If patch can be represented by a set of image features $\{f_i\}$:

$$P(C = c_i \mid \mathbf{patch}) = P(C = c_i \mid f_1, f_2, \dots f_n, f_{n+1}, \dots f_N)$$

If patch can be represented by a set of image features $\{f_i\}$:

$$P(C = c_i \mid \mathbf{patch}) = P(C = c_i \mid f_1, f_2, \dots f_n, f_{n+1}, \dots f_N)$$

which is proportional to

$$P(f_1, f_2, \dots f_n, f_{n+1}, \dots \dots f_N \mid C = c_i)$$

but complete representation of the joint distribution infeasible.

If **patch** can be represented by a set of image features $\{f_i\}$:

$$P(C = c_i \mid \mathbf{patch}) = P(C = c_i \mid f_1, f_2, \dots f_n, f_{n+1}, \dots f_N)$$

which is proportional to

$$P(f_1, f_2, \cdots f_n, f_{n+1}, \cdots \cdots f_N \mid C = c_i)$$

but complete representation of the joint distribution infeasible.

Naive Bayesian ignores the correlation:

$$pprox \prod_{j} P(f_j \mid C = c_i)$$

If **patch** can be represented by a set of image features $\{f_i\}$:

$$P(C = c_i \mid \mathbf{patch}) = P(C = c_i \mid f_1, f_2, \dots f_n, f_{n+1}, \dots f_N)$$

which is proportional to

$$P(f_1, f_2, \dots f_n, f_{n+1}, \dots \dots f_N \mid C = c_i)$$

but complete representation of the joint distribution infeasible.

Naive Bayesian ignores the correlation:

$$pprox \prod_{j} P(f_j \mid C = c_i)$$

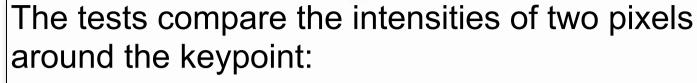
Compromise:

$$\approx P(f_1, f_2, \dots f_n \mid C = c_i) \times P(f_{n+1}, \dots f_{2n} \mid C = c_i) \times \dots$$

The tests compare the intensities of two pixels around the keypoint:

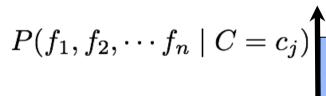
$$f_i = \begin{cases} 1 & \text{if } I(m_{i,1}) \leq I(m_{i,2}) \\ 0 & \text{otherwise} \end{cases}$$

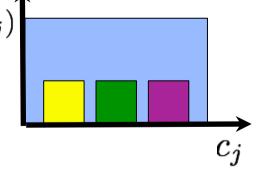
Invariant to light change by any raising function.



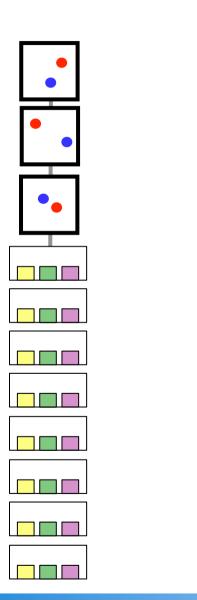
$$f_i = \begin{cases} 1 & \text{if } I(m_{i,1}) \leq I(m_{i,2}) \\ 0 & \text{otherwise} \end{cases}$$

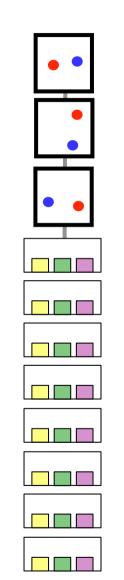
Invariant to light change by any raising function.

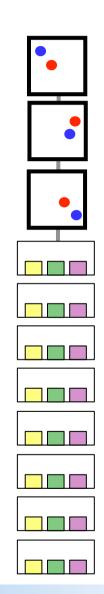


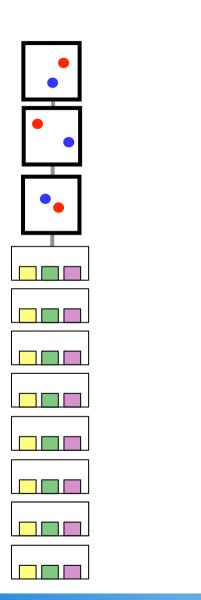


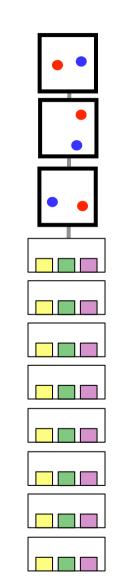


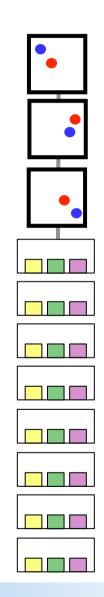


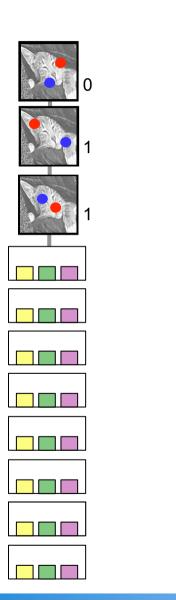


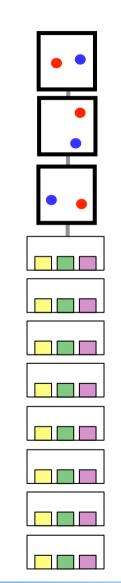


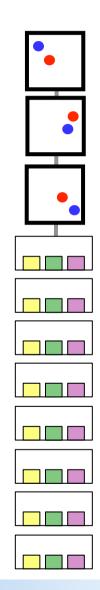


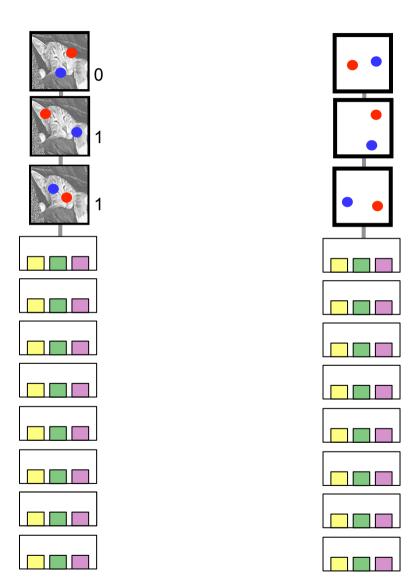




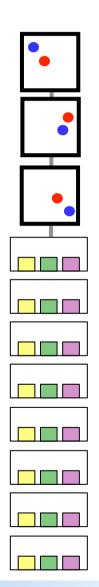


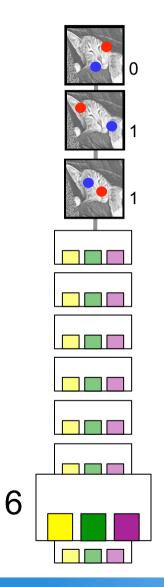


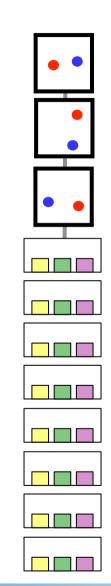


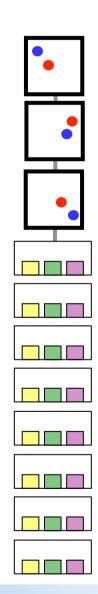


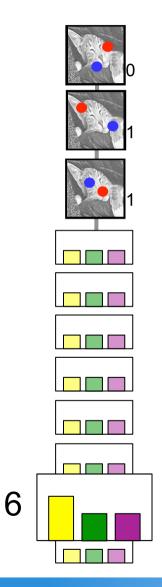
6

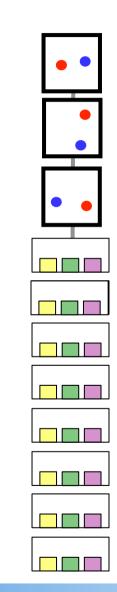


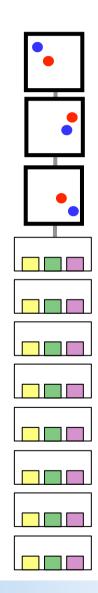


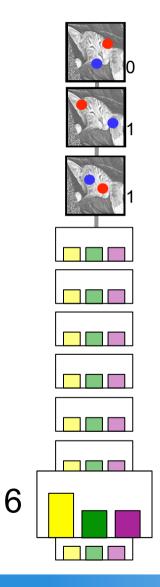


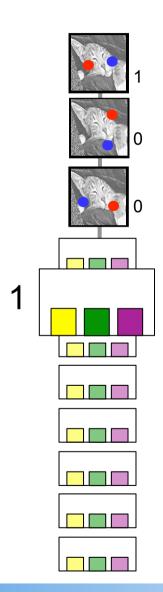


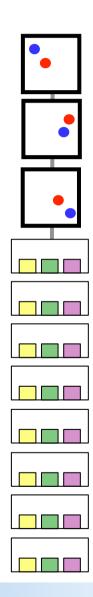


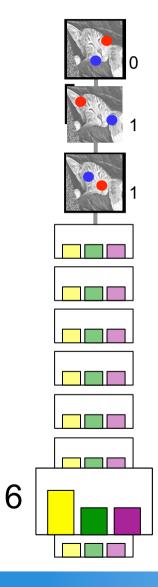


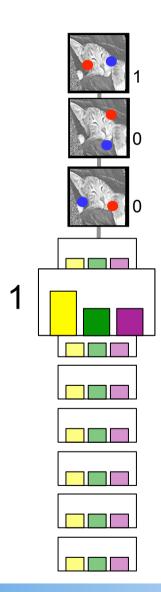


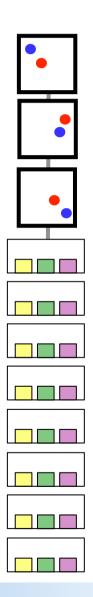


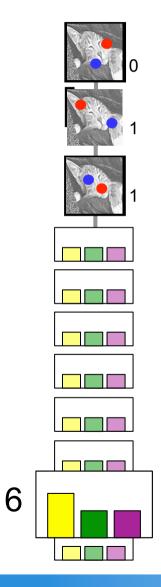


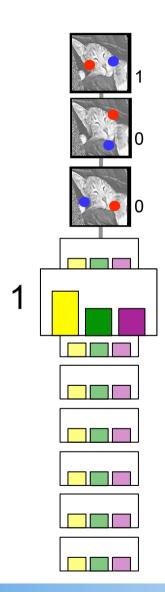


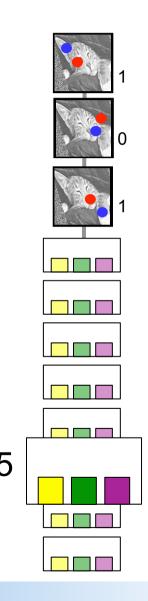


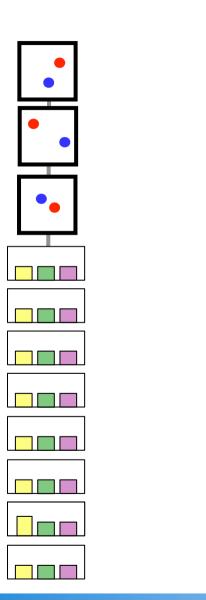


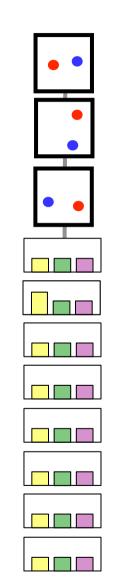


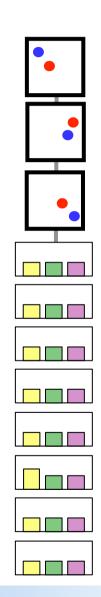


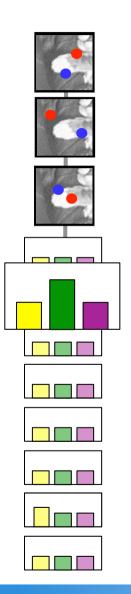


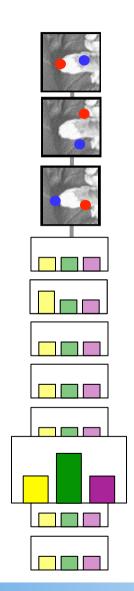


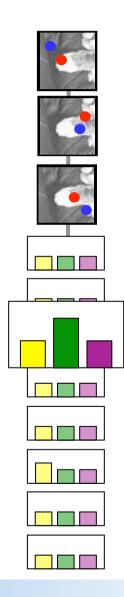


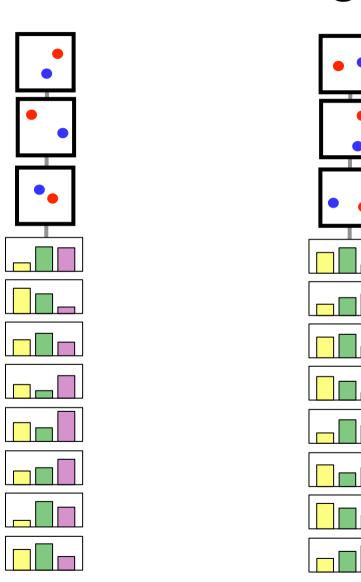


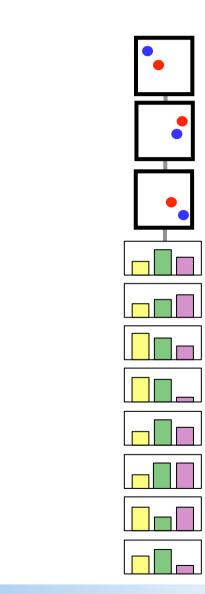


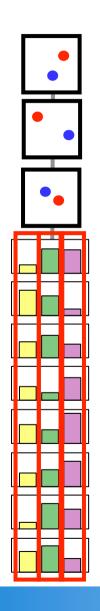


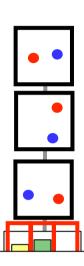










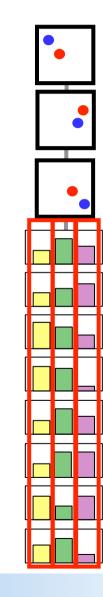


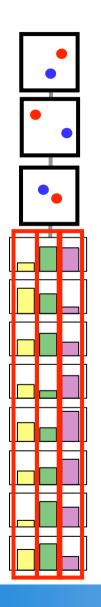
Normalize:

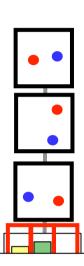
$$\sum_{000} P(f_1, f_2, \dots, f_n \mid C = c_i) = 1$$

001 :

111



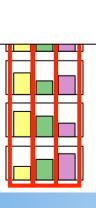


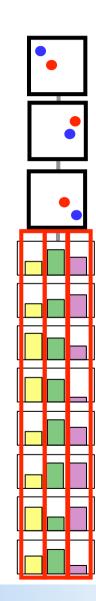


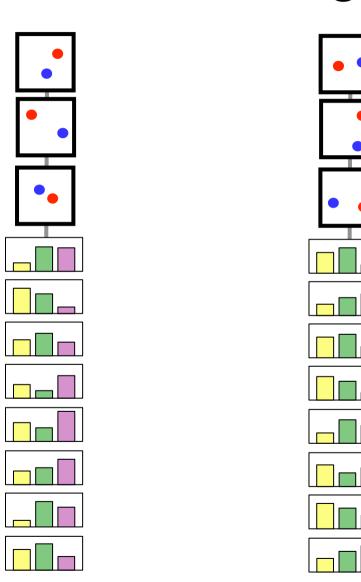
Normalize:

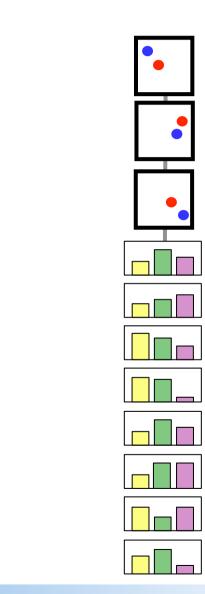
$$\sum_{\substack{000\\001}} P(f_1, f_2, \dots, f_n \mid C = c_i) = 1$$

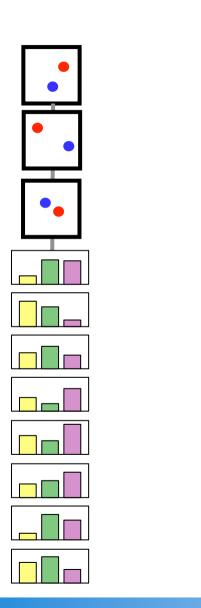
111

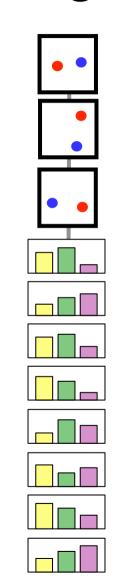


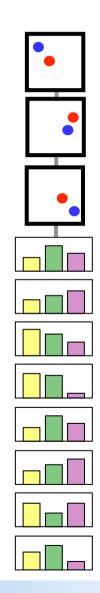


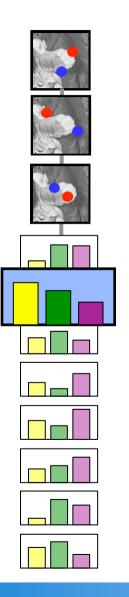




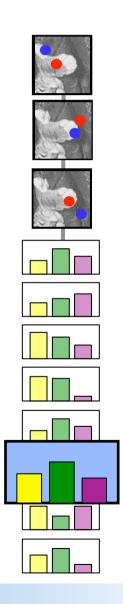


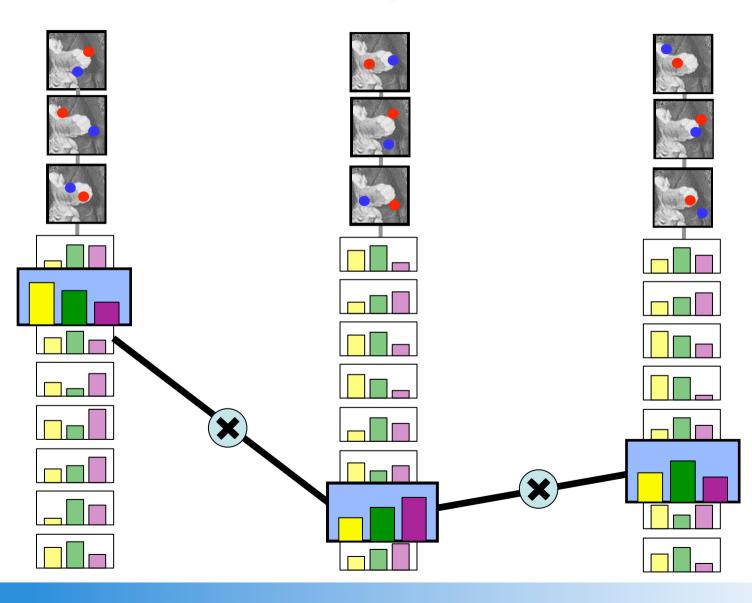


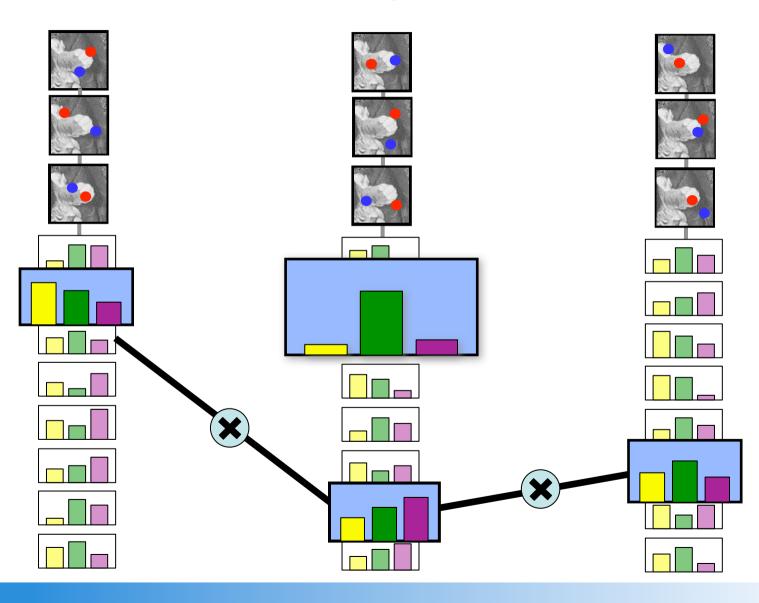


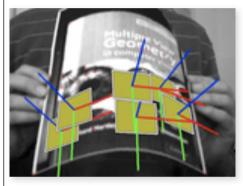








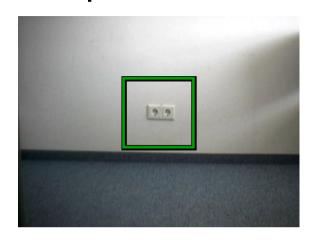


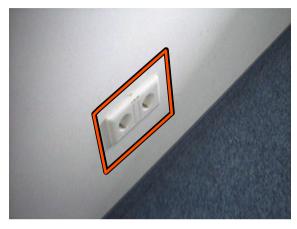


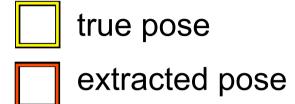
Gepard real-time learning of patch rectification [CVPR'09]

Joint Work with Stefan Hinterstoisser

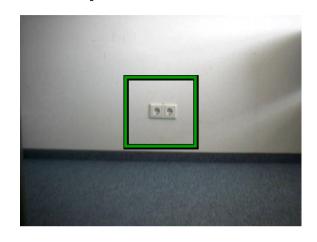
Gepard:







Gepard:

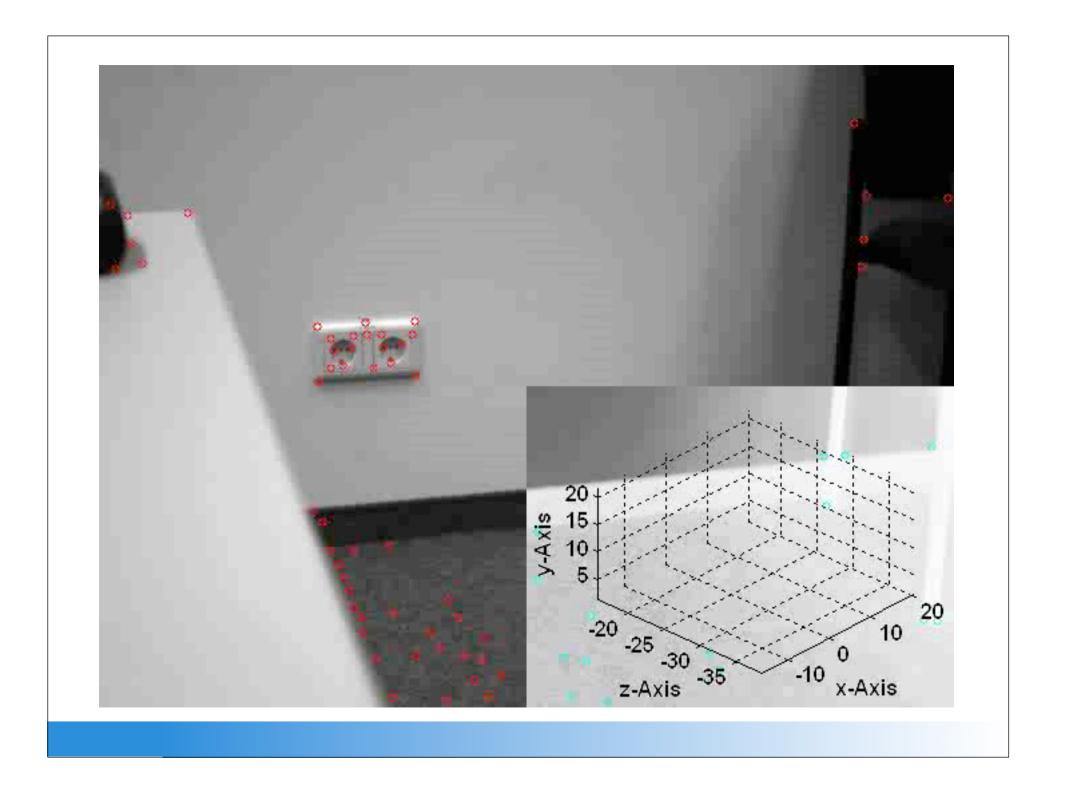


true pose extracted pose

Affine region detectors:

true pose

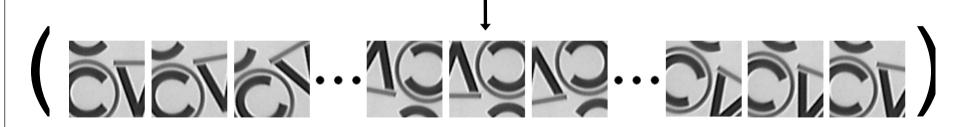
extracted pose

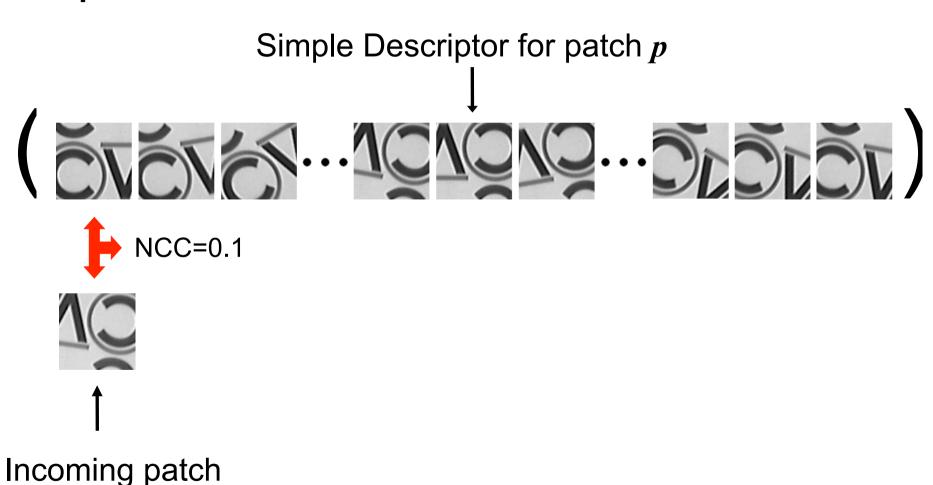


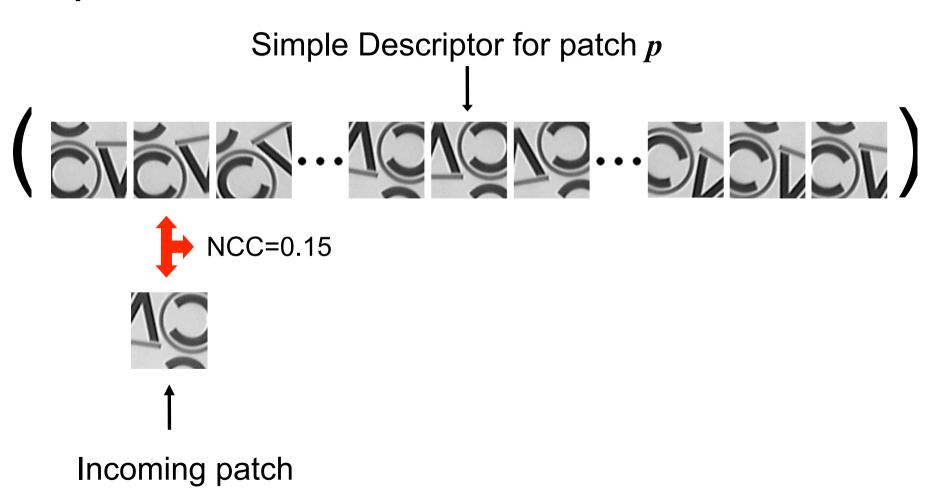
Keypoint Recognition & Coarse Pose Estimation **Simple Solution:**

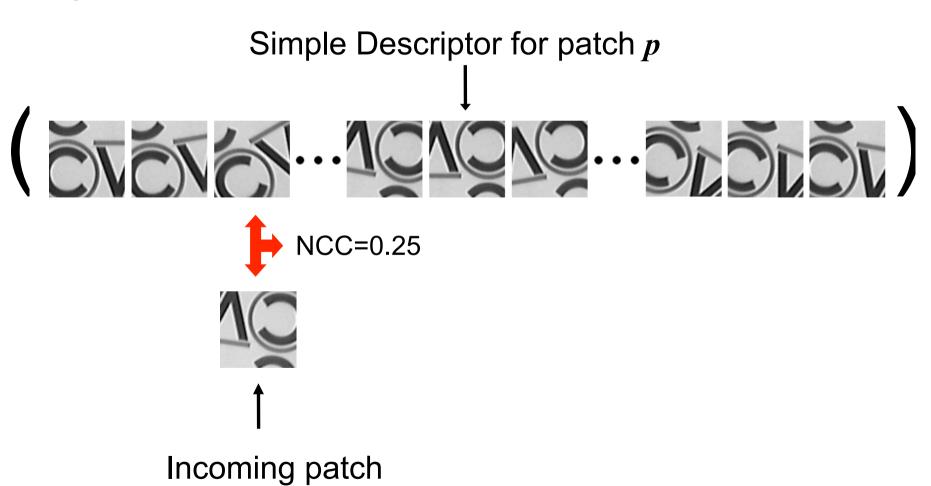
Simple Solution:

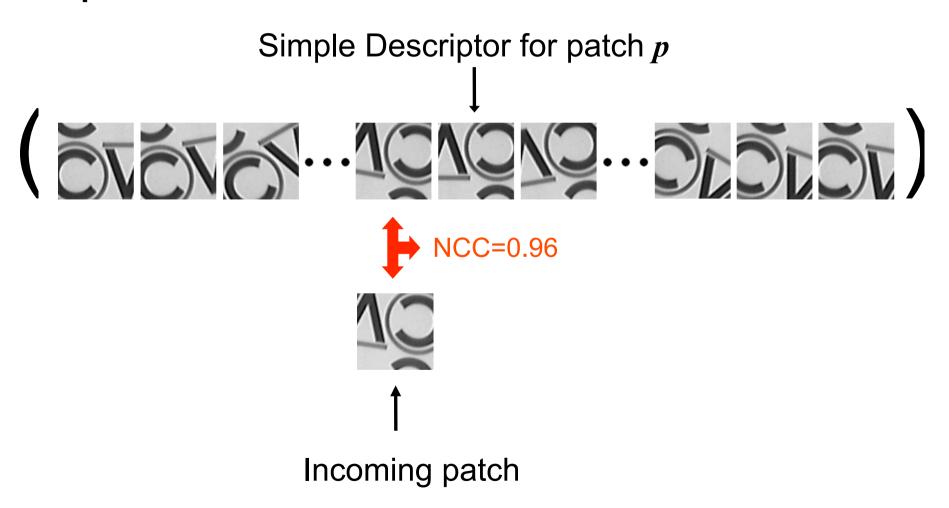
Simple Descriptor for patch *p*

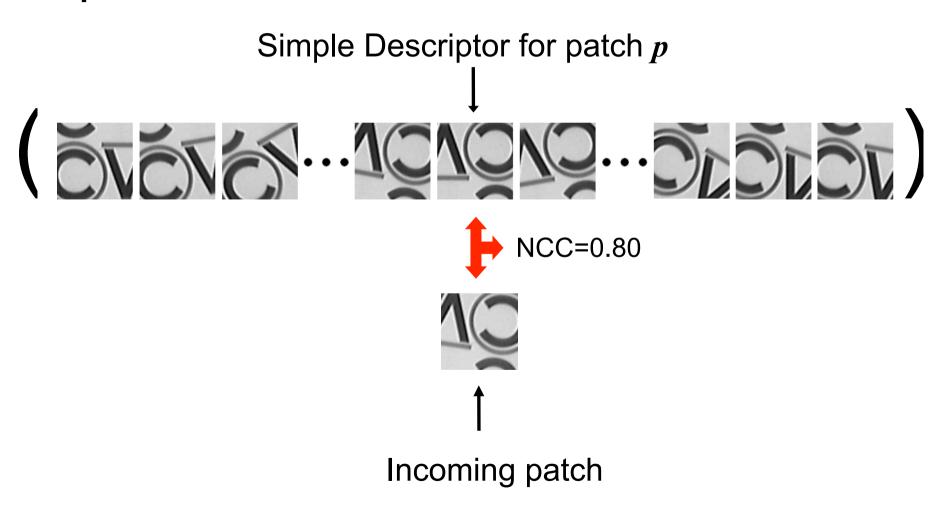


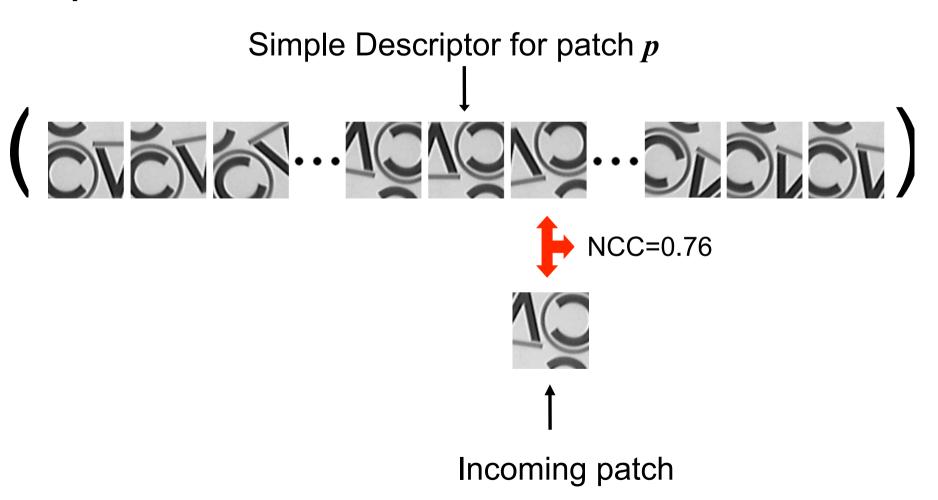


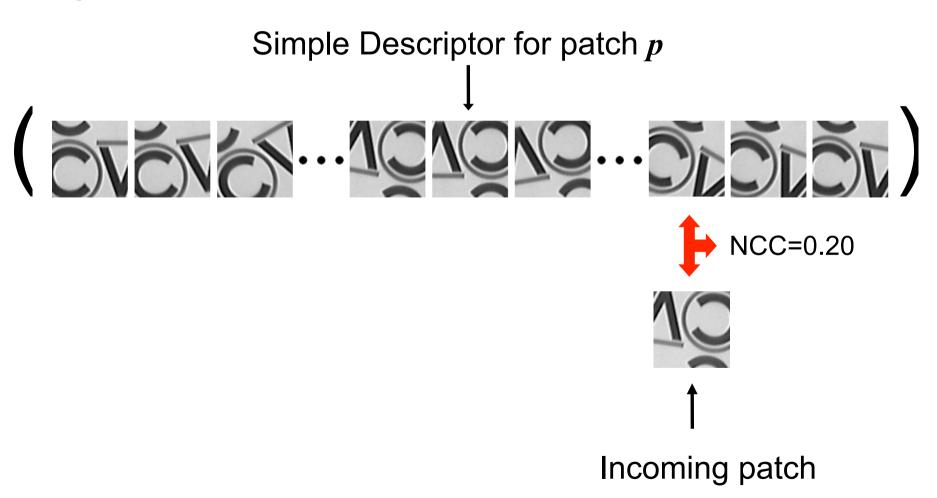


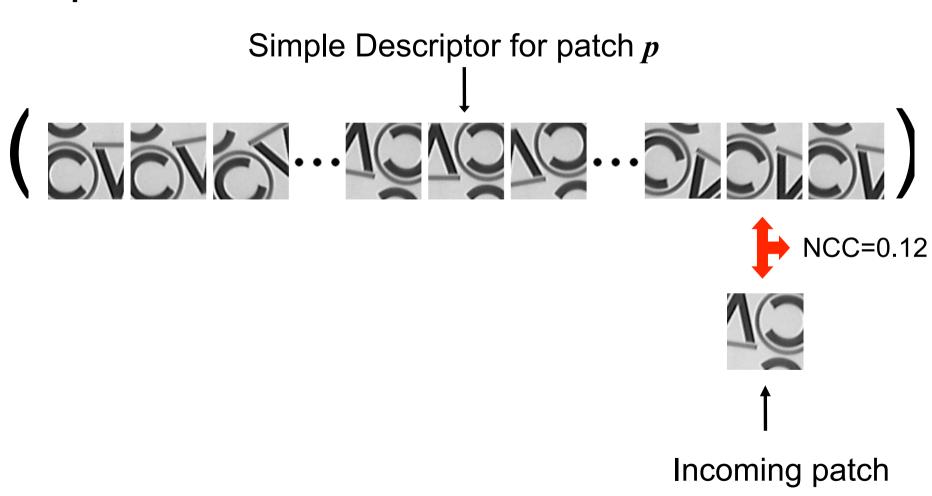


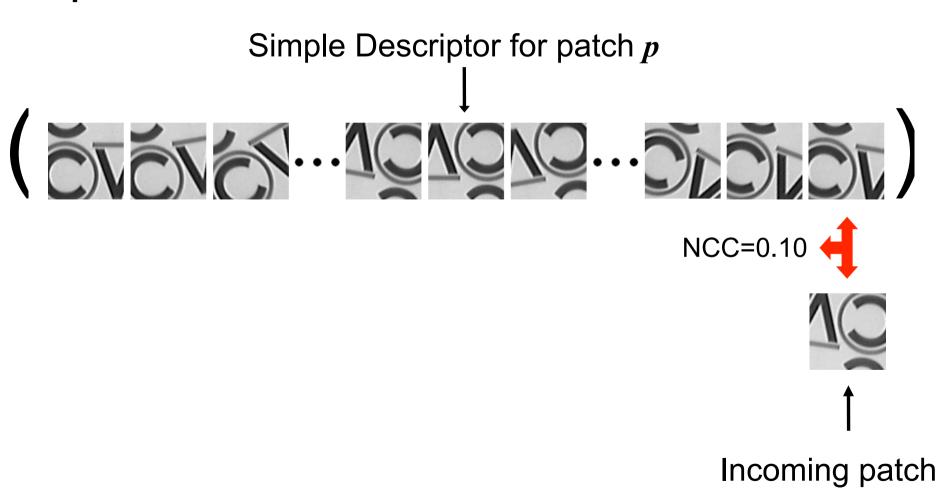




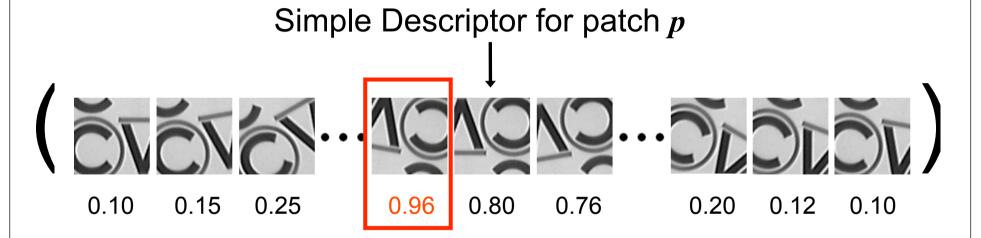




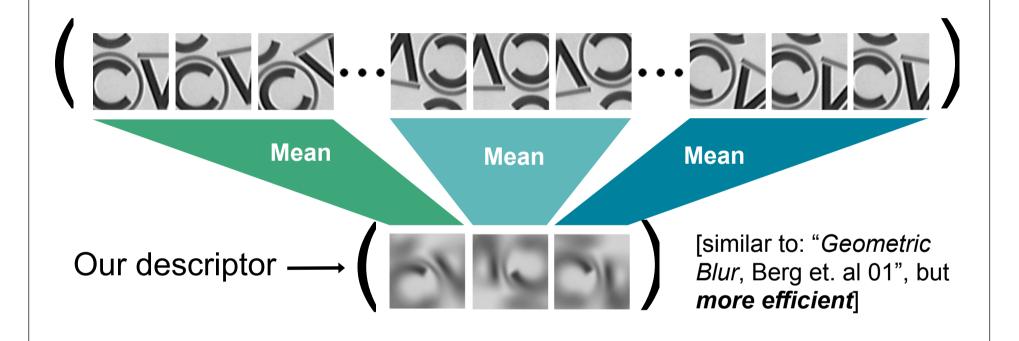




Simple Solution:

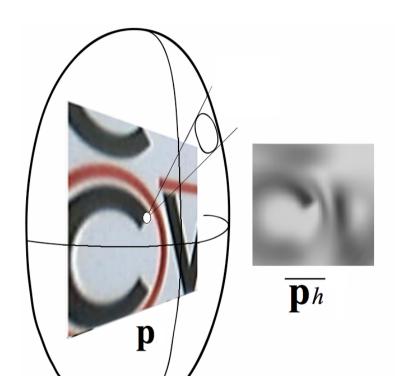


computationally very expensive



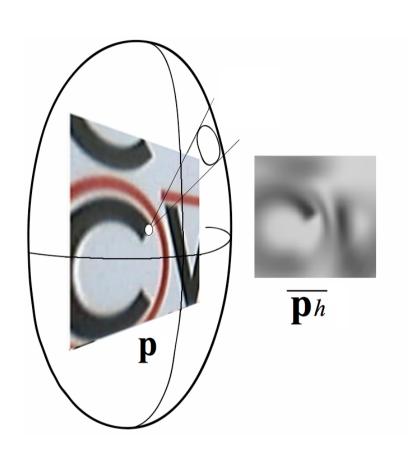
Incoming patch

Fast Computation of Mean Patches

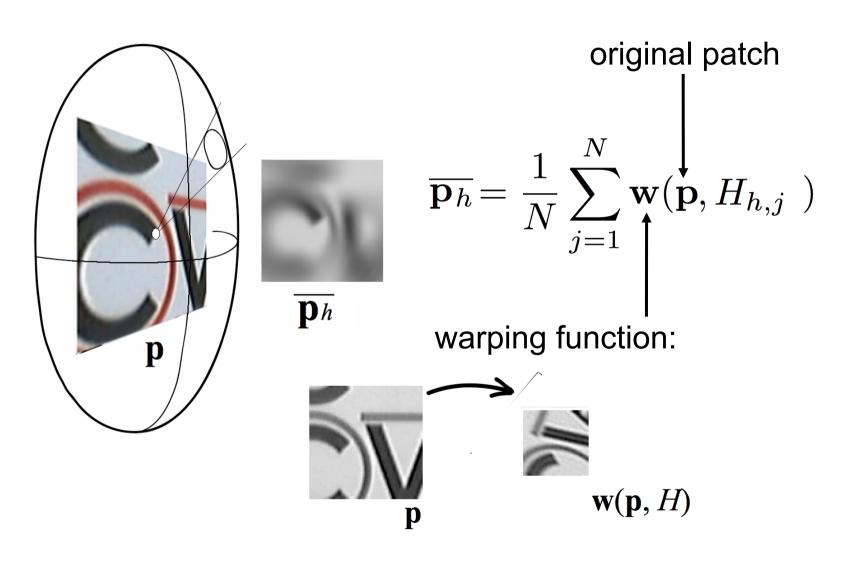


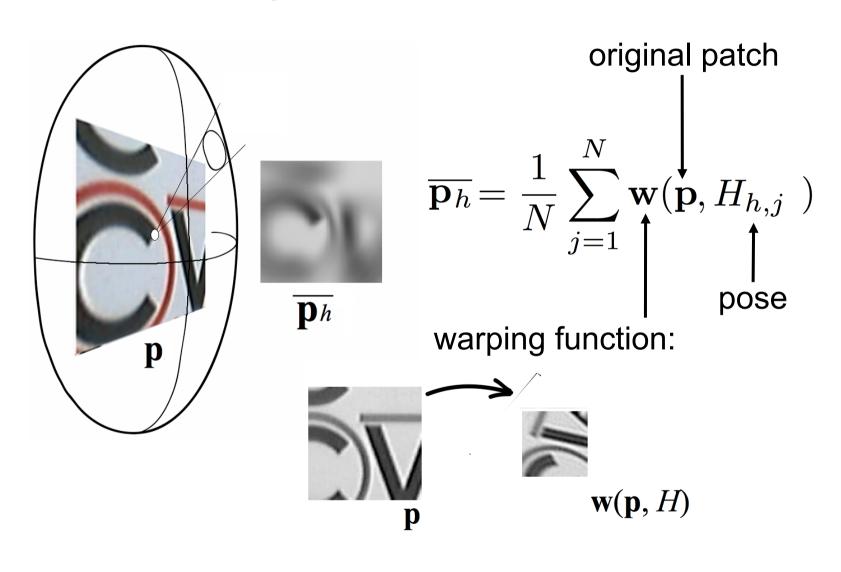
$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{p}, H_{h,j})$$

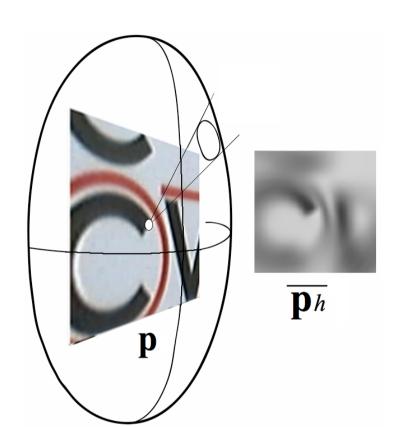
Fast Computation of Mean Patches



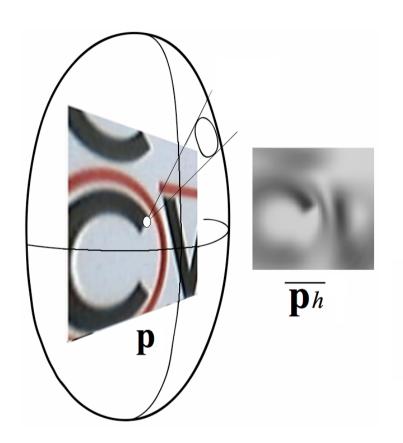
original patch
$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^N \mathbf{w}(\mathbf{p}, H_{h,j} \)$$







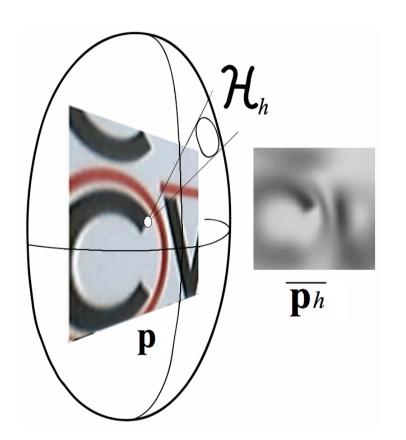
$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{p}, H_{h,j})$$



$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{p}, H_{h,j})$$

$$= \frac{1}{N} \sum_{j} \mathbf{w}(\sum_{l=1}^{L} \alpha_l \mathbf{v}_l, H_{j,h})$$

PCA decomposition of the original patch

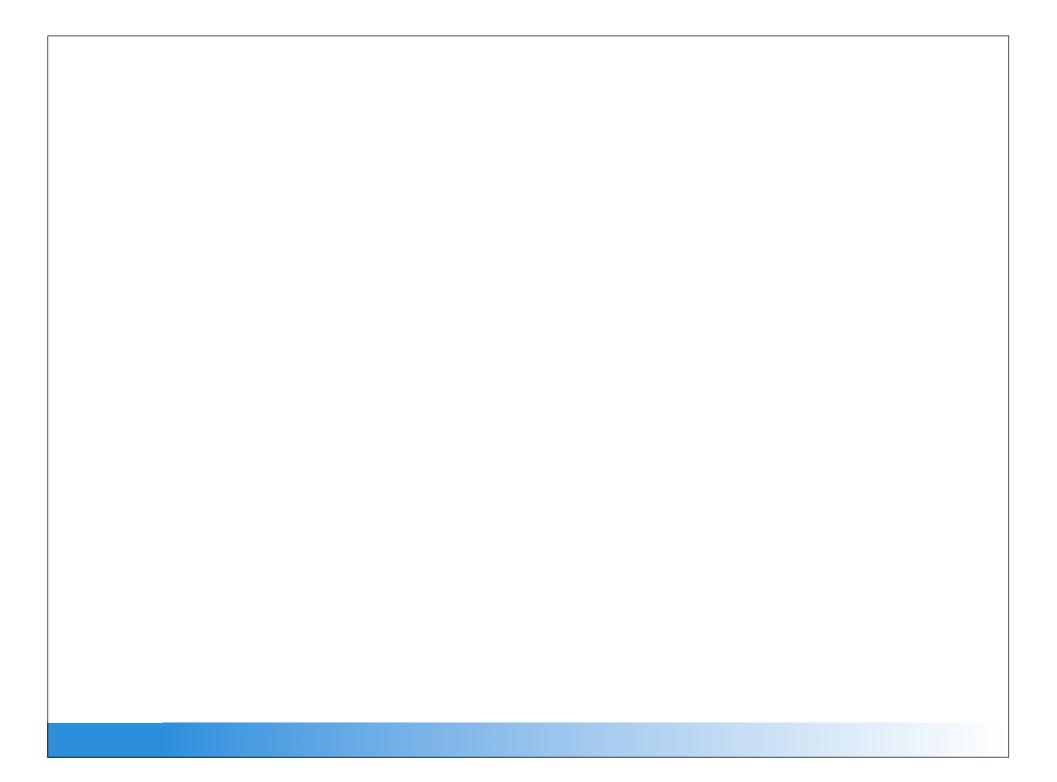


$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{p}, H_{h,j})$$

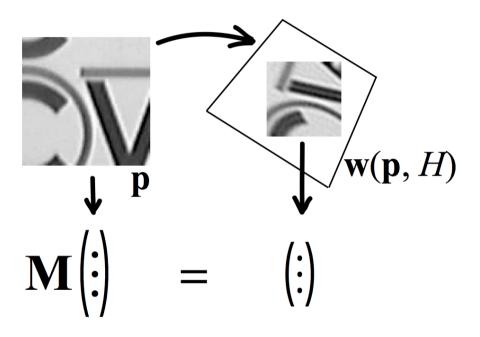
$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w} \left(\sum_{l=1}^{L} \alpha_l \mathbf{v}_l, H_{j,h} \right)$$

PCA decomposition of the original patch

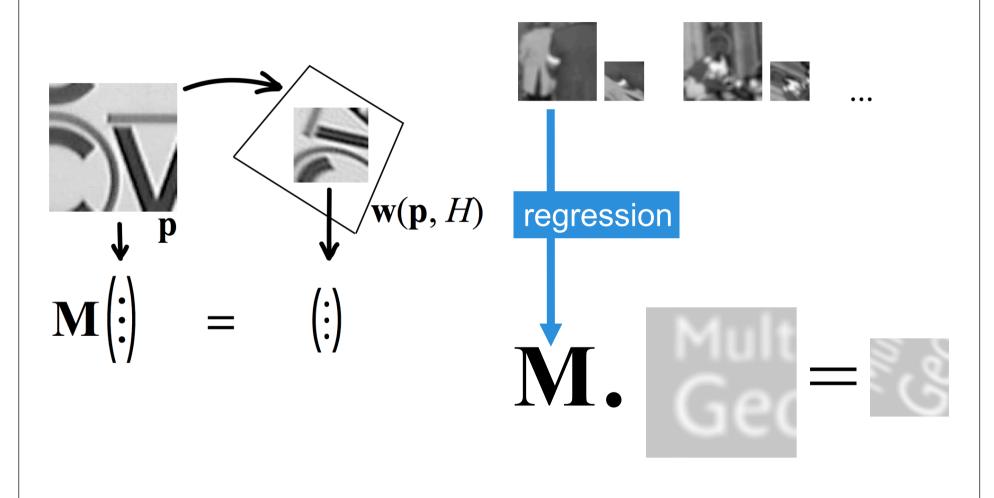
$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w} \left(\sum_{l=1}^{L} \alpha_l \mathbf{v}_l, H_{j,h} \right)$$



$\mathbf{w}(., H)$ is a linear function



$\mathbf{w}(., H)$ is a linear function



$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w} \left(\sum_{l=1}^{L} \alpha_l \mathbf{v}_l, H_{j,h} \right)$$

$$\overline{\mathbf{p}_h} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w} \left(\sum_{l=1}^{L} \alpha_l \mathbf{v}_l, H_{j,h} \right)$$

$$= \frac{1}{N} \sum_{j=1}^{N} \left(\sum_{l=1}^{L} \alpha_{l} \mathbf{w}(\mathbf{v}_{l}, H_{j,h}) \right)$$

$$= \sum_{l=1}^{L} \frac{\alpha_l}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{v}_l, H_{j,h})$$

$$= \sum_{l=1}^{L} \alpha_l \overline{\mathbf{v}_{l,h}}$$

computation time does not depend on the number of samples

precomputed:

$$\overline{\mathbf{v}_{l,h}} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{w}(\mathbf{v}_l, H_{j,h})$$

Matrix Form

(0)
$$\alpha = \mathbf{P}_{pca}\mathbf{p}$$

(1)
$$\overline{\mathbf{p}_{h=1}} = \mathbf{V}_{h=1} \mathbf{\alpha}$$

(2)
$$\overline{\mathbf{p}_{h=2}} = \mathbf{V}_{h=2} \boldsymbol{\alpha}$$

(i)
$$\overline{\mathbf{p}_{h=i}} = \mathbf{V}_{h=i} \, \boldsymbol{\alpha}$$

$$dim(\mathbf{p}) >> dim(\mathbf{\alpha})$$

Matrix Form

(1)
$$\overline{\mathbf{p}_{h=1}} = \mathbf{V}_{h=1} \boldsymbol{\alpha}$$

(2)
$$\overline{\mathbf{p}_{h=2}} = \mathbf{V}_{h=2} \mathbf{\alpha}$$

(i)
$$\overline{\mathbf{p}_{h=i}} = \mathbf{V}_{h=i} \, \boldsymbol{\alpha}$$

$$dim(\mathbf{p}) >> dim(\mathbf{\alpha})$$

Matrix Form

(0)
$$\alpha = \mathbf{P}_{pca} \mathbf{p}^{\prime\prime}$$

$$\overline{\mathbf{p}_{h=1}} = \mathbf{V}_{h=1} \mathbf{\alpha}$$

$$(2) \overline{\mathbf{p}_{h=2}} = \mathbf{V}_{h=2} \mathbf{\alpha}$$

$$(i)$$
, $\overline{\mathbf{p}_{h=i}} = \mathbf{V}_{h=i} \, \boldsymbol{\alpha}$

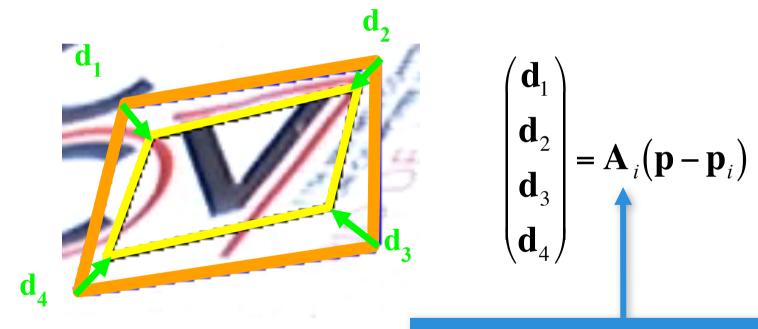
$$dim(\mathbf{p}) >> dim(\mathbf{\alpha})$$

- Online computation time only depends on the number of principal components
- Matrix/vector products can be efficiently implemented on the CPU/GPU

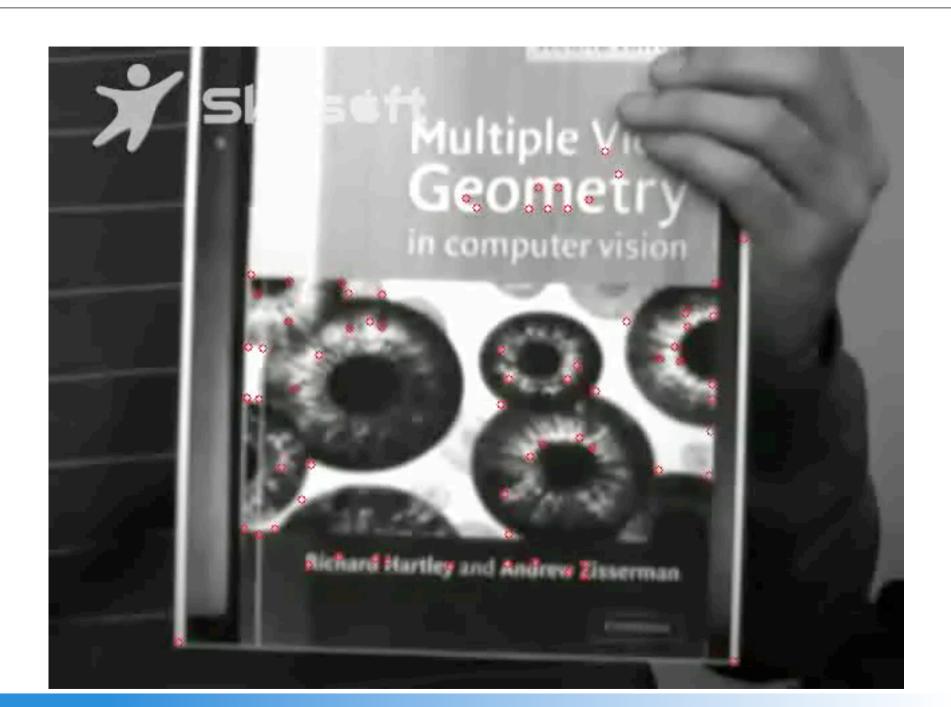
Naïve	~ 1 s
PCA CPU	15 ms
PCA GPU	5 ms

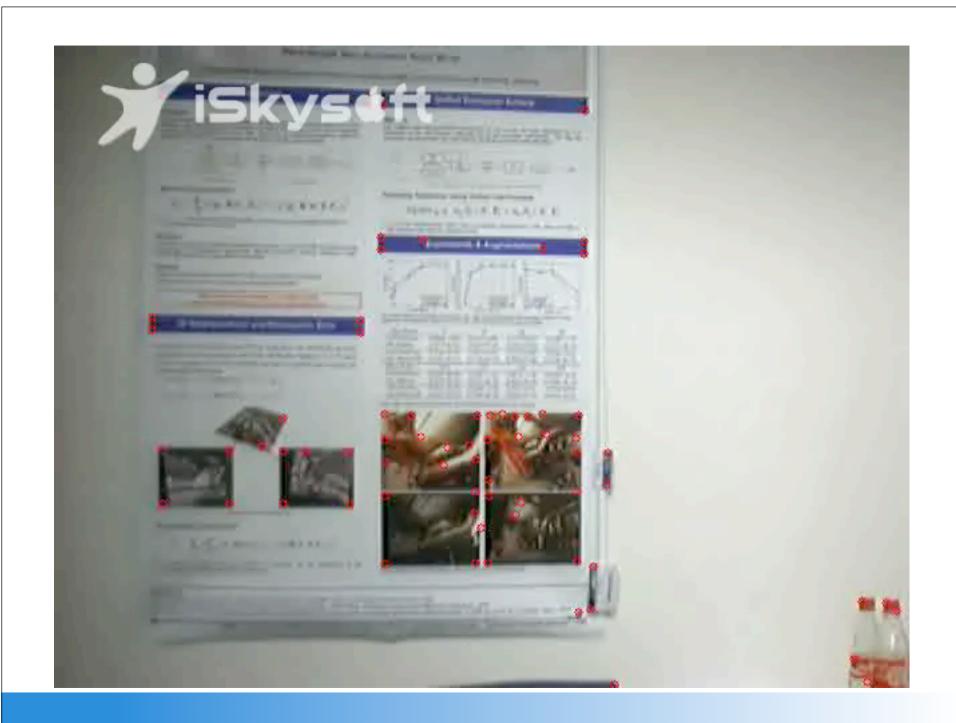
Speed improvement about the factor 200!

Second Step: Pose Refinement



Matrices A_i learned by regression [Jurie & Dhome 01]

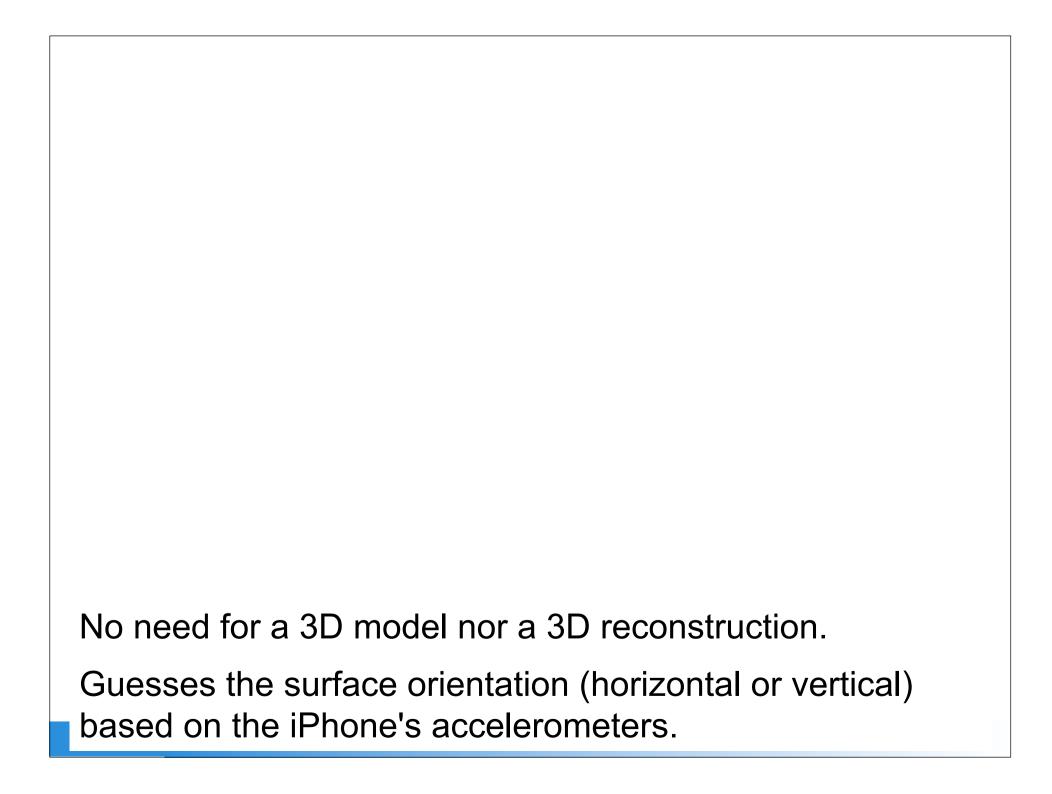




Application to point-and-shoot Augmented Reality on iPhones (with GIST - South Korea)

No need for a 3D model nor a 3D reconstruction.

Guesses the surface orientation (horizontal or vertical) based on the iPhone's accelerometers.

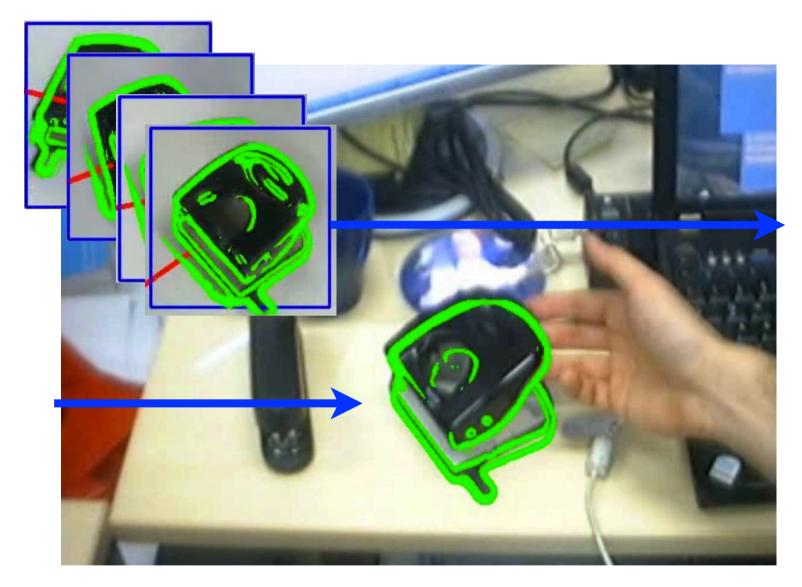


No need for a 3D model nor a 3D reconstruction.

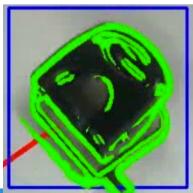
Guesses the surface orientation (horizontal or vertical) based on the iPhone's accelerometers.

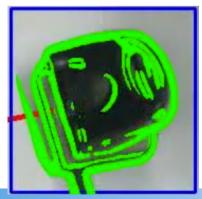
DOT [CVPR'10] dense descriptor for object detection

Joint work with Stefan Hinterstoisser

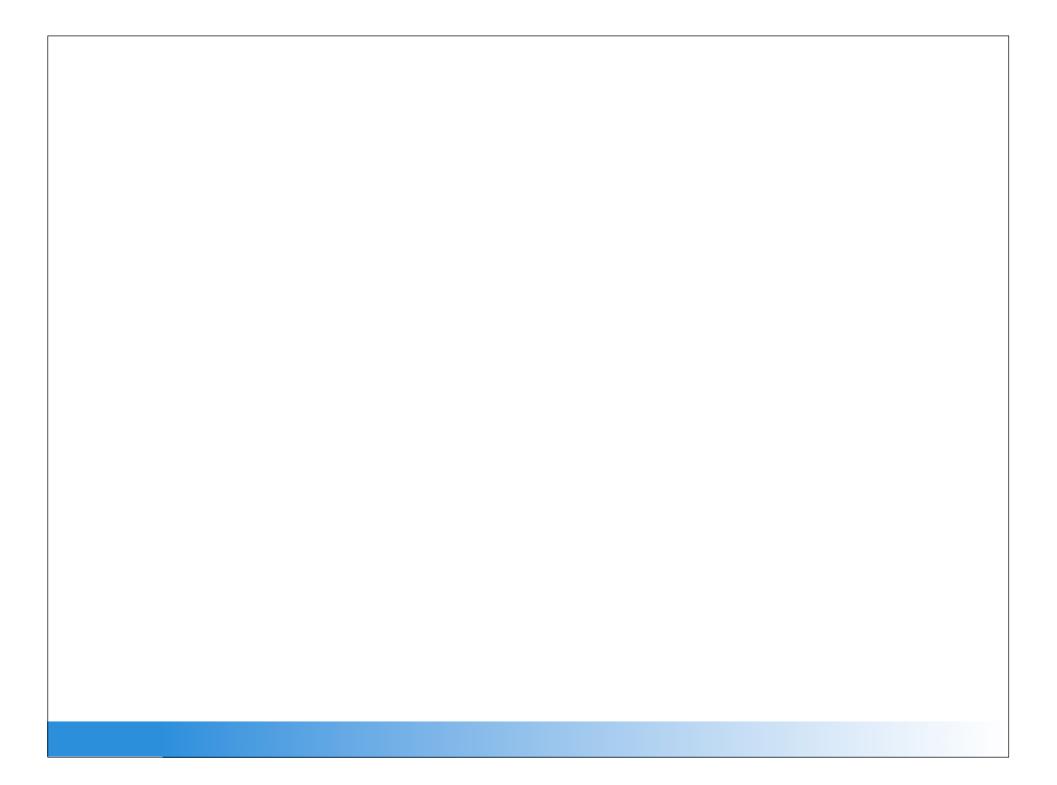


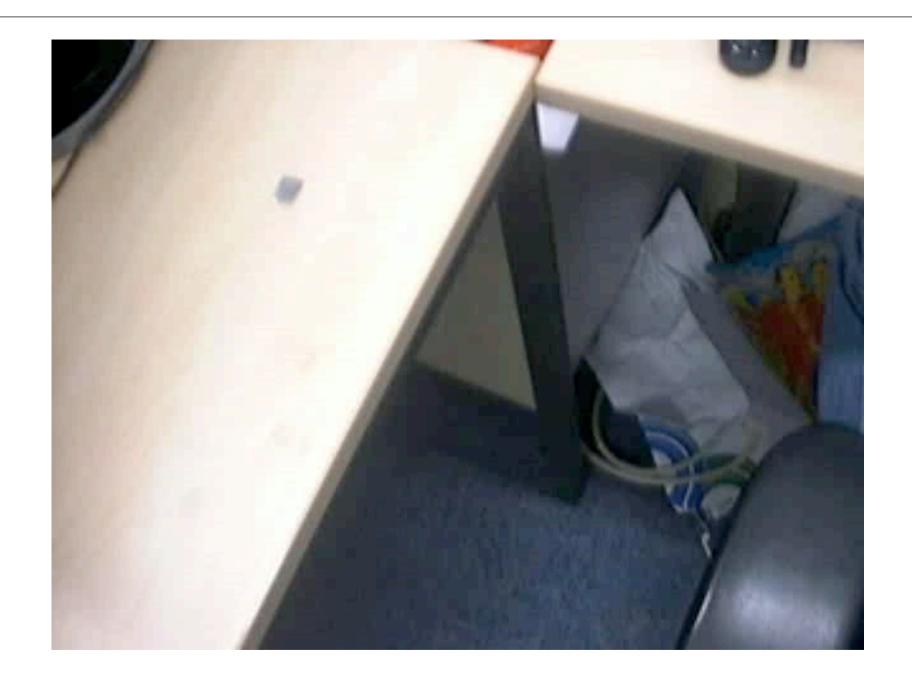
Template matching with an efficient representation of the images and the templates.





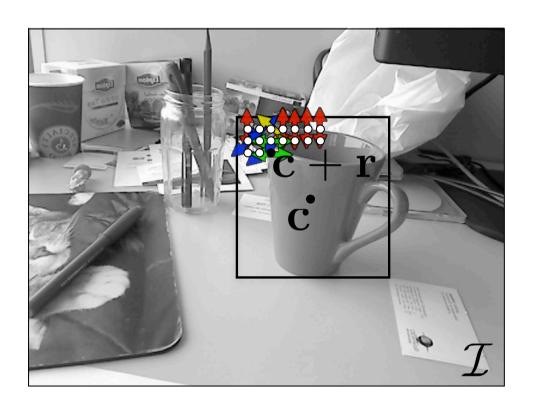






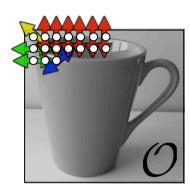
Initial Similarity Measure

Initial Similarity Measure



$$\mathcal{E}_1(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathbf{r}} \mathbb{1}[\operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathbf{r}) = \operatorname{orientation}(\mathcal{O}, \mathbf{r})]$$

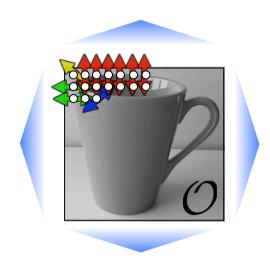
Making the Similarity Measure Robust to Small Motions



$$\mathcal{E}_1(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathbf{r}} \mathbb{1}[\operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathbf{r}) = \operatorname{orientation}(\mathcal{O}, \mathbf{r})]$$

$$\mathcal{E}_2(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \max_{\text{motion}} \mathcal{E}_1(\mathcal{I}, \mathbf{w}(\mathcal{O}, \text{motion}), \mathbf{c})$$

Making the Similarity Measure Robust to Small Motions



$$\mathcal{E}_1(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathbf{r}} \mathbb{1}[\operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathbf{r}) = \operatorname{orientation}(\mathcal{O}, \mathbf{r})]$$

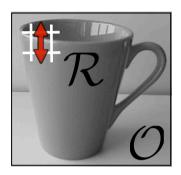
$$\mathcal{E}_2(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \max_{\text{motion}} \mathcal{E}_1(\mathcal{I}, \mathbf{w}(\mathcal{O}, \text{motion}), \mathbf{c})$$

Downsampling

$$\mathcal{E}_2(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \max_{\text{motion}} \sum_{\mathbf{r}} \mathbb{1}[\text{orientation}(\mathcal{I}, \mathbf{c} + \mathbf{r}) = \text{orientation}(\mathbf{w}(\mathcal{O}, \text{motion}), \mathbf{r})]$$

$$\mathcal{E}_{3}(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \max_{\text{motion}} \sum_{\mathcal{R}} \mathbb{1}[\begin{array}{c} \text{dominant} \\ \text{orientation} \end{array} (\mathcal{I}, \mathbf{c} + \mathcal{R}) = \begin{array}{c} \text{dominant} \\ \text{orientation} \end{array} (\mathbf{w}(\mathcal{O}, \text{motion}), \mathcal{R})]$$

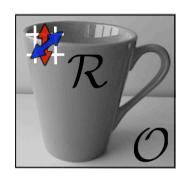
Ignoring the Dependencies between the Regions...



$$\mathcal{E}_3(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \max_{\text{motion}} \sum_{\mathcal{R}} \mathbb{1}[\begin{array}{c} \text{dominant} \\ \text{orientation} (\mathcal{I}, \mathbf{c} + \mathcal{R}) = \end{array}] \begin{array}{c} \text{dominant} \\ \text{orientation} (\mathbf{w}(\mathcal{O}, \text{motion}), \mathcal{R}) \end{array}]$$

$$\mathcal{E}_4(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathbf{motion}} \max_{\mathbf{motion}} \mathbb{1}[\begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathcal{R}) = \end{array}] \begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation}(\mathbf{w}(\mathcal{O}, \operatorname{motion}), \mathcal{R}) \end{array}]$$

Lists of Dominant Orientations

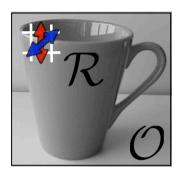


$$\mathcal{E}_4(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathcal{R}} \max_{\text{motion}} \mathbb{1}[\begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathcal{R}) = \end{array}] \begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation}(\mathbf{w}(\mathcal{O}, \operatorname{motion}), \mathcal{R}) \end{array}]$$

$$\mathcal{E}_4(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathcal{R}} \mathbb{1}[\begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation}(\mathcal{I}, \mathbf{c} + \mathcal{R}) \in \end{array}] \begin{array}{c} \operatorname{dominant} \\ \operatorname{orientations} \\ \operatorname{over all} \end{array} (\mathbf{w}(\mathcal{O}, \operatorname{motion}), \mathcal{R}) \end{array}]$$

Fast Computation with Bitwise Operations

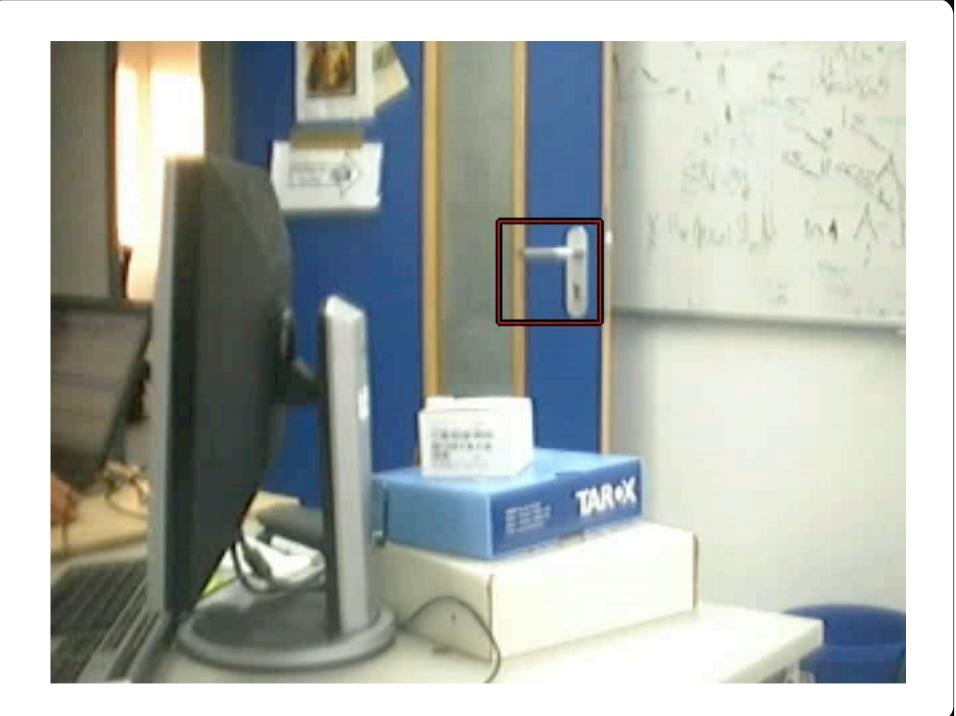
00001100

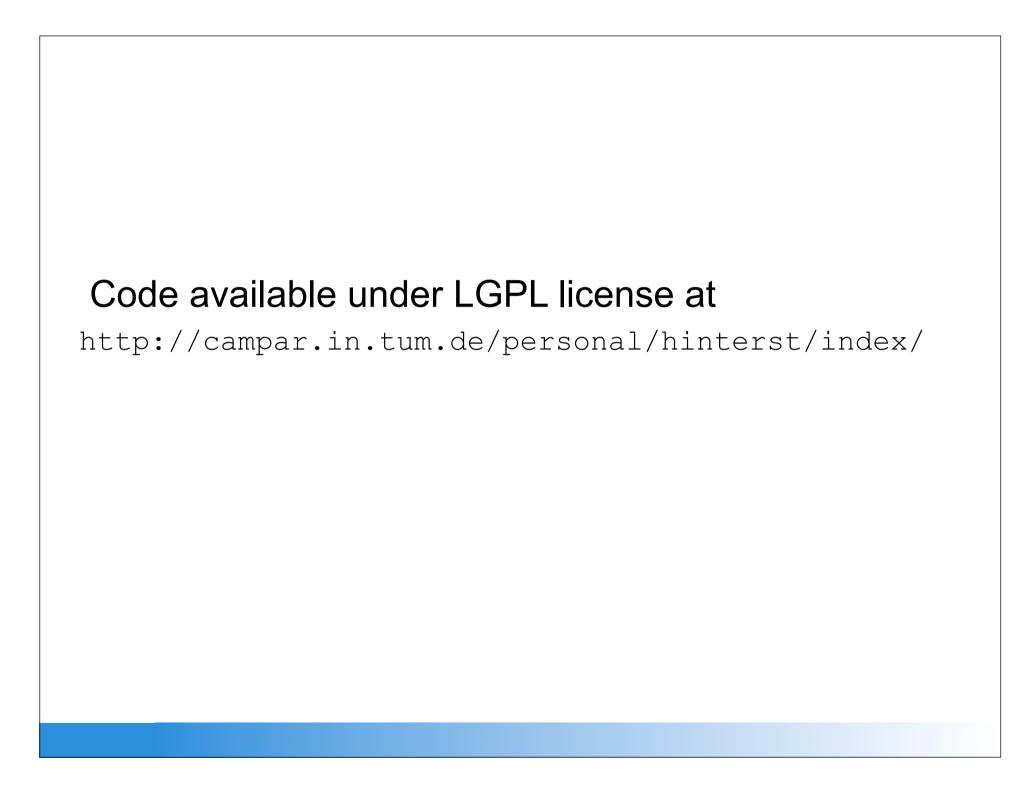


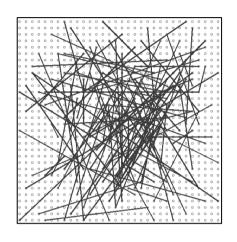
$$\mathcal{E}_4(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum_{\mathcal{R}} \mathbb{1}[\begin{array}{c} \operatorname{dominant} \\ \operatorname{orientation} \end{array} (\mathcal{I}, \mathbf{c} + \mathcal{R}) \in$$

dominant orientations $(\mathbf{w}(\mathcal{O}, \text{motion}), \mathcal{R})$ over all motions

$$\mathcal{E}_{\mathrm{final}}(\mathcal{I}, \mathcal{O}, \mathbf{c}) = \sum \mathbb{1}[I_{\mathbf{c}+\mathcal{R}} \otimes O_{\mathcal{R}} \neq 0]$$

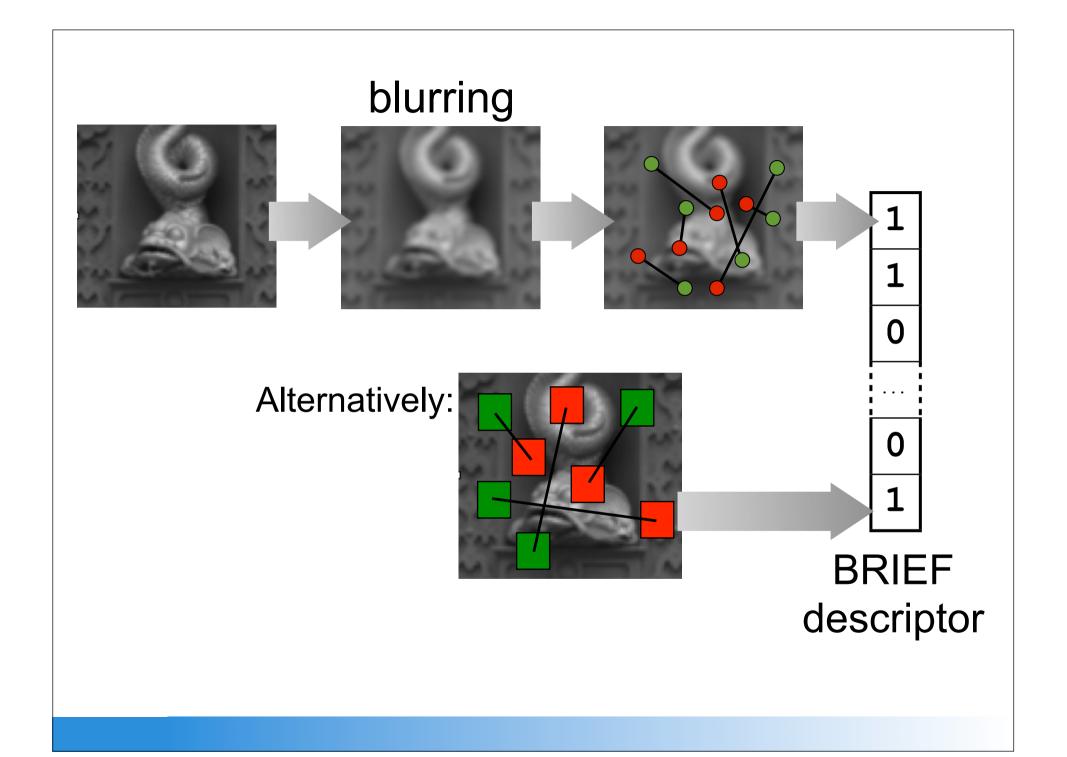






BRIEF [ECCV'10] very fast feature point descriptor

Joint work with Michael Calonder

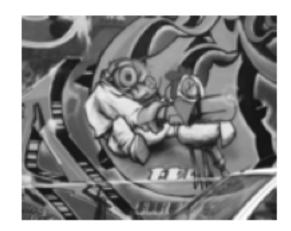


Evaluation

Wall

Jpg

Graffiti

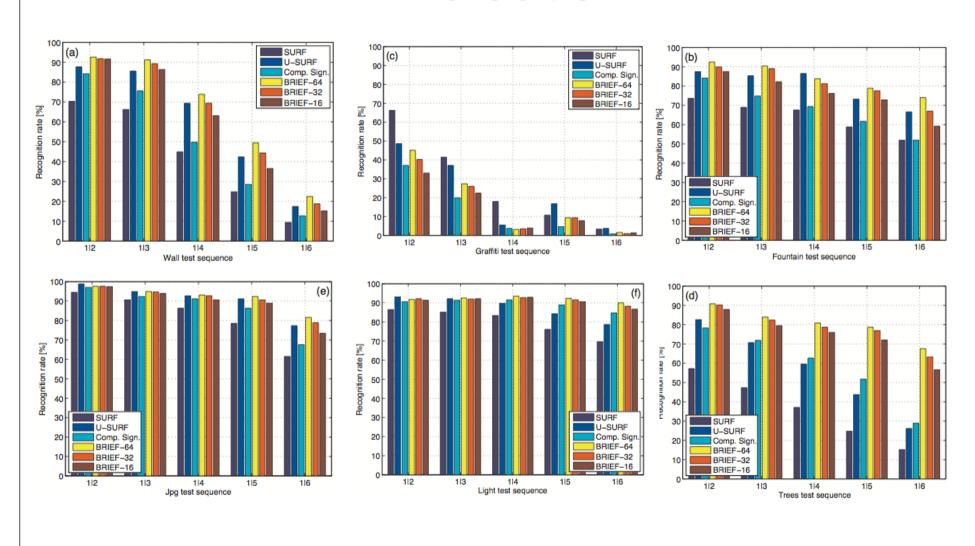


Light

Fountain

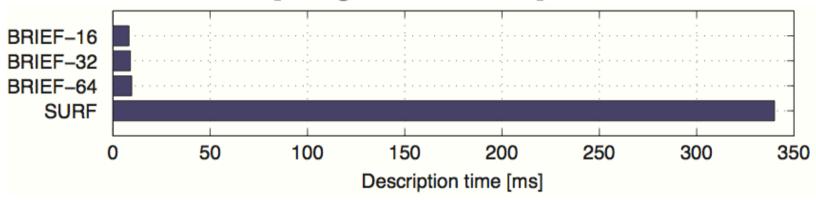
Trees

Evaluation

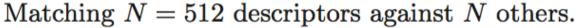


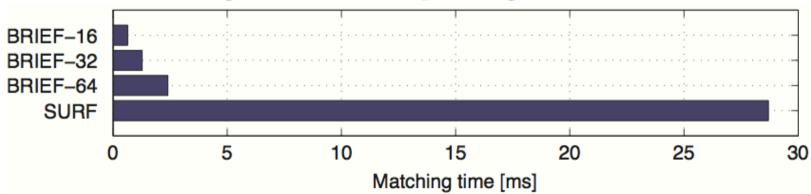
Computation Speed

Computing N = 512 descriptors.



For BRIEF, most of the time is spent in blurring the patches.



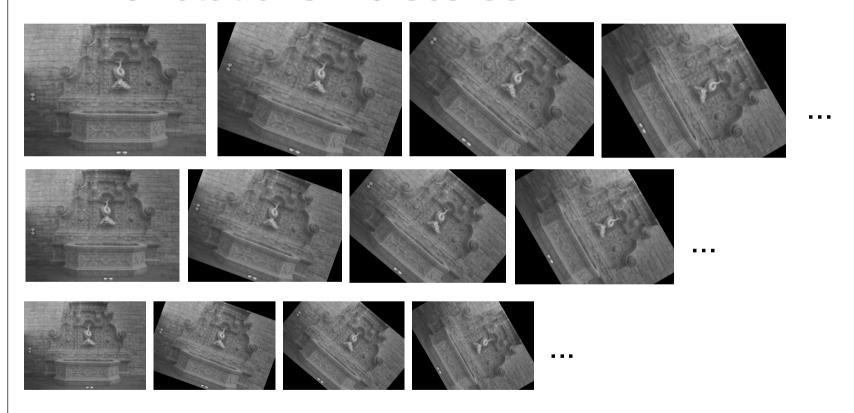


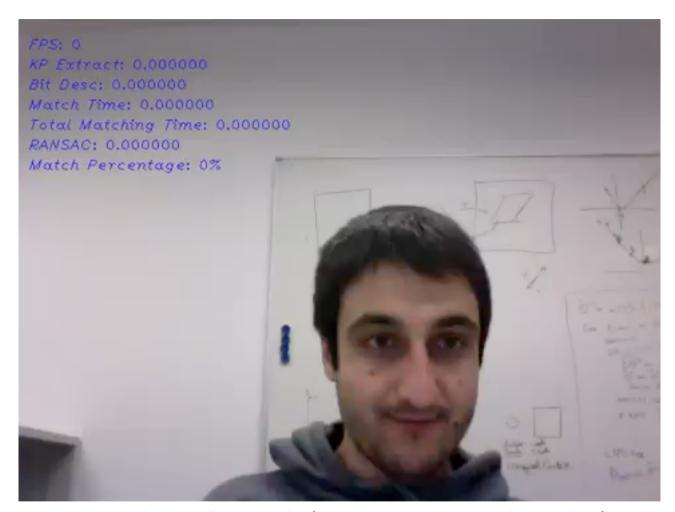
Matching BRIEF descriptors is done using the Hamming distance, which is very fast to compute using the popcount instruction on recent Intel CPUs.

Rotation and Scale Invariance

Duplicate the Descriptors:

18 rotations x 3 scales





code released in GPL on CVLab website

