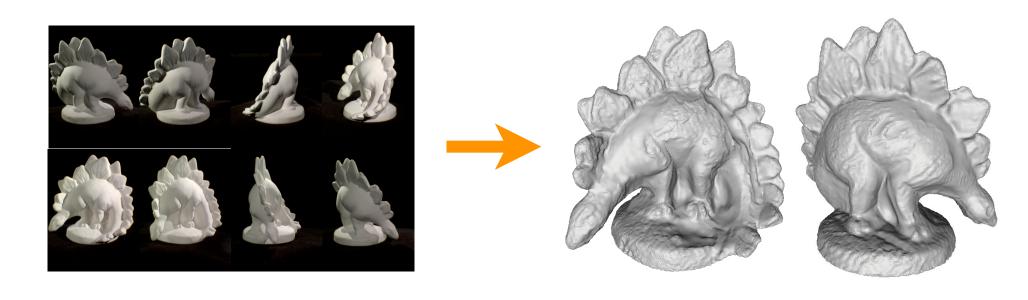


Optimizing Photoconsistency in image-based 3D and appearance modeling

Peter Sturm, INRIA Grenoble, France

with Pau Gargallo, KukJin Yoon, Amaël Delaunoy, Emmanuel Prados, Visesh Chari, J.-P. Pons

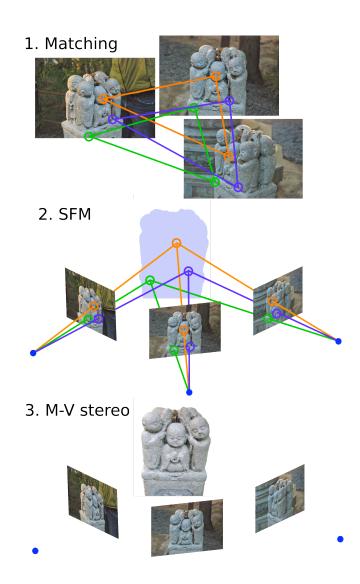
3D Reconstruction from Images



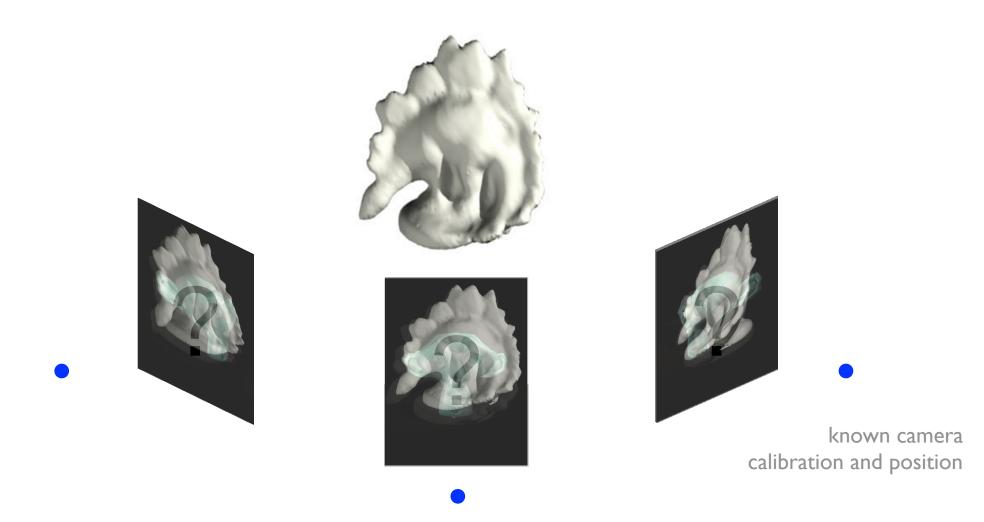
- Building 3D models from images
- Applications:
 - Cinema post-production, special FX and games
 - Archeology and cultural heritage preservation
 - Telecommunication
 - Robotics...

3D Reconstruction Pipeline

- Matching
 Finding point correspondences
- Structure from Motion Locating the cameras and the point locations
- Multi-View Stereo
 Dense Reconstruction



Multi-View Stereo

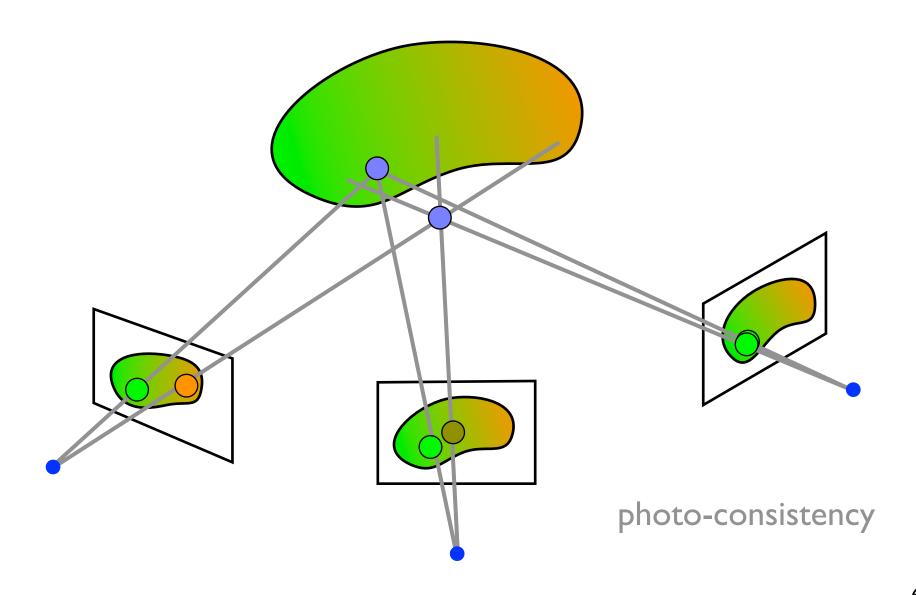


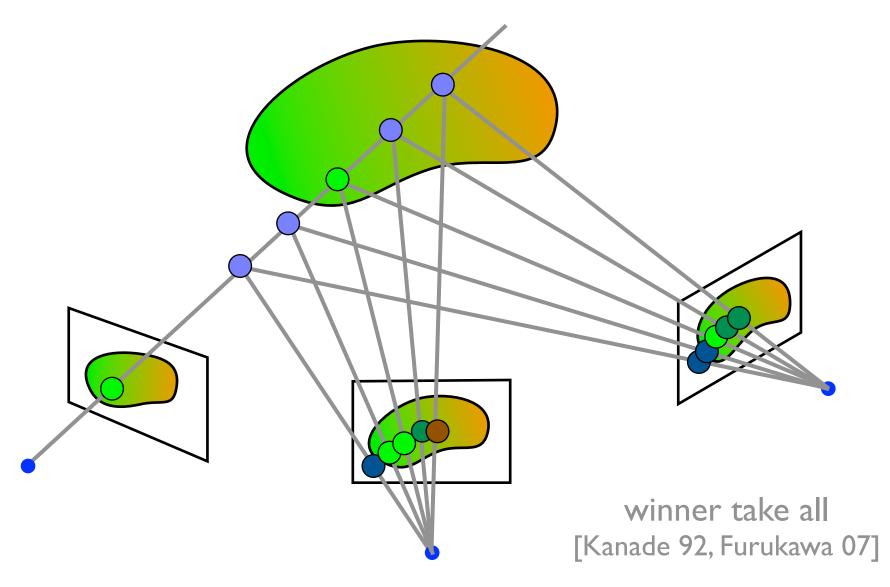
Stereo is the inverse problem of rendering

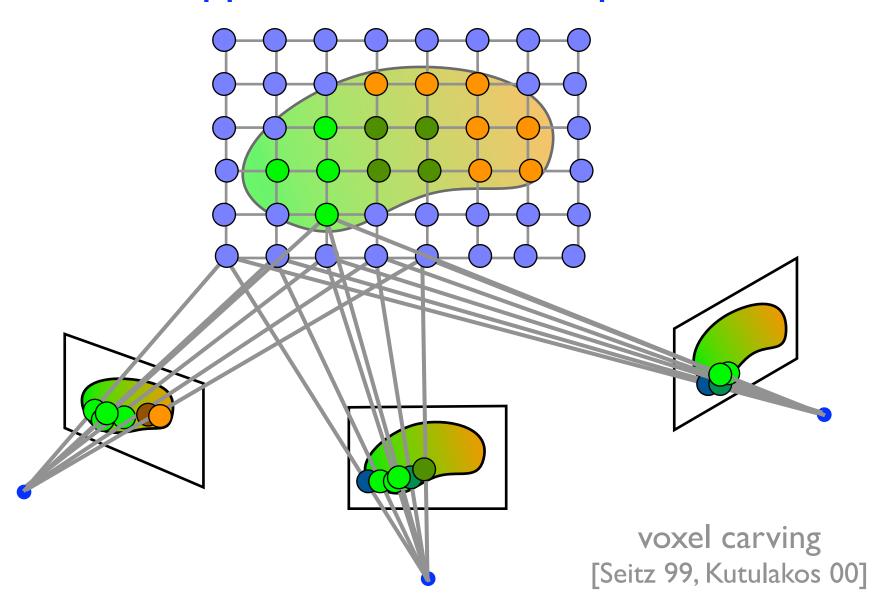
Quality measure: reprojection error (photoconsistency)

Existing Approaches

- Bottom-up: Direct Methods
- Top-down: Energy Minimization
- Hybrids







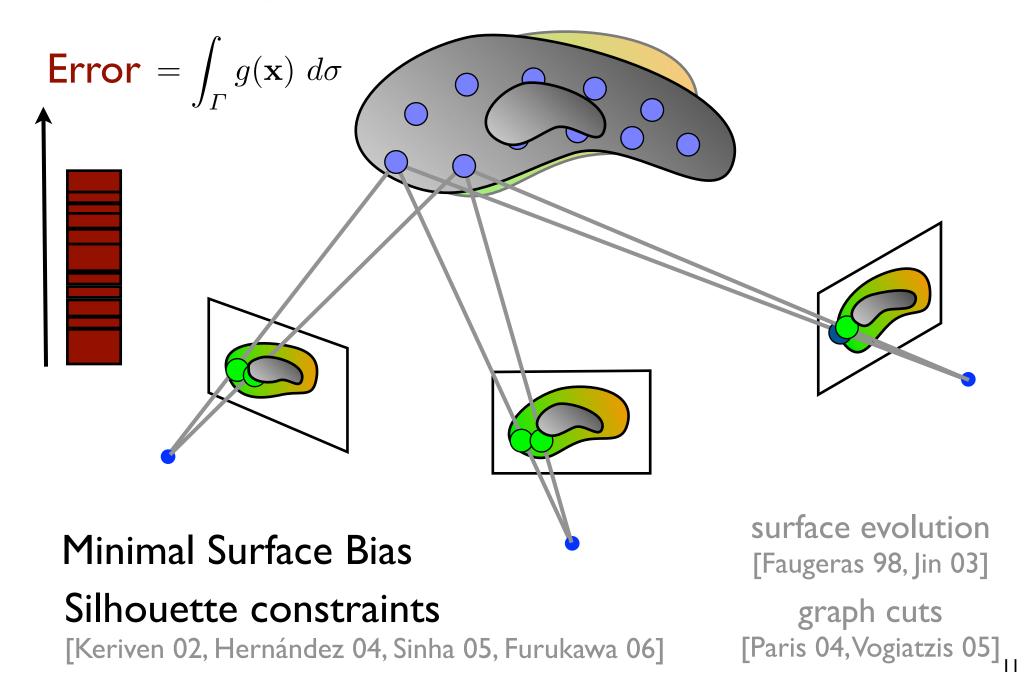
- Problems:
 - False detections: photo-consistent but not on surface
 - Needs regularization

- Missing detections: on surface but not photoconsistent due to occlusions
 - Need to take care of occlusions

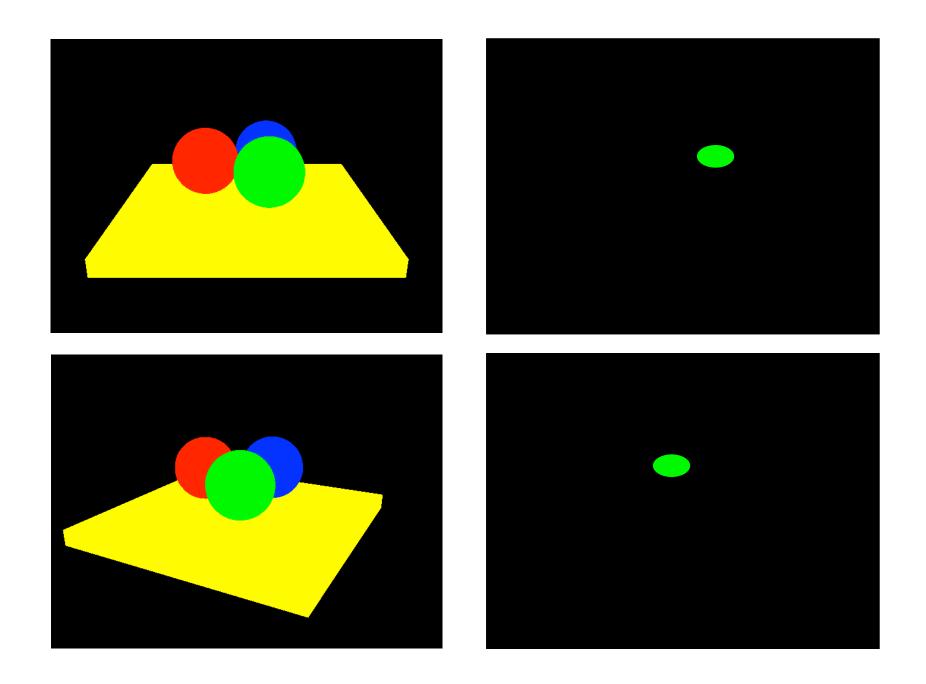
Existing Approaches

- Bottom-up: Direct Methods
- Top-down: Energy Minimization
- Hybrids

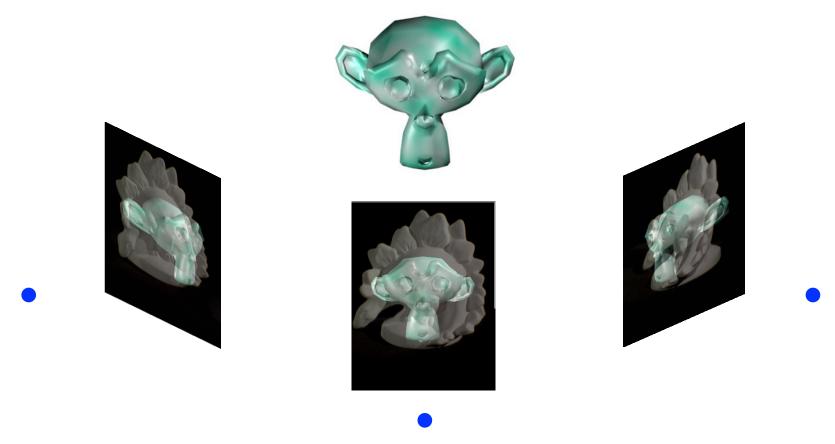
Top-Down: Energy Minimization



Top-Down: The Reprojection Error



The Reprojection Error – Remarks



- Need to model shape and color (constant brightness assumption)
- Compare all the pixels of the input images
- Need to model the background
- Predicting the images involves dealing with occlusions

The Reprojection Error – Remarks

- Need to model the background
 - Use actual background images

- Reconstruct background mosaic
- Use knowledge that background is of given color
- Assume that background has similar colors in all images

The Bayesian Rationale

What is the most probable object given the images?

posterior
$$p(w|I) = \frac{p(I|w) \ p(w)}{p(I)}$$

$$\frac{p(w|I) = \frac{p(I|w) \ p(w)}{p(I)}$$
 evidence

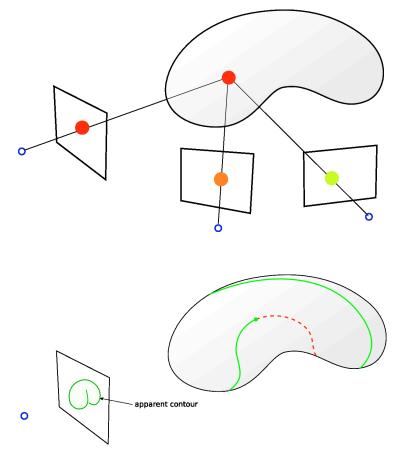
Energy formulation

$$E(w|I) = E(I|w) + E(w)$$
 data term prior reprojection error

The Weighted Area Functional

$$A(\Gamma) = \int_{\Gamma} g(\mathbf{x}) \ d\sigma$$

- Sum over the surface of a photo-consistency measure
- It can be optmized! (graph cuts, surface evolution and others)
- Problem: minimal surface bias. Bias towards small surfaces
- Palliatives: silhouettes and occluding contour constraints, ballooning forces



Reprojection Error vs. Weighted Area

• The weighted area is a sum over the surface

$$A(\Gamma) = \int_{\Gamma} g(\mathbf{x}) \ d\sigma$$

The reprojection error is a sum over the image

$$E(\Gamma) = \int_{\mathcal{I}} g(\pi_{\Gamma}^{-1}(\mathbf{u})) d\mathbf{u}$$

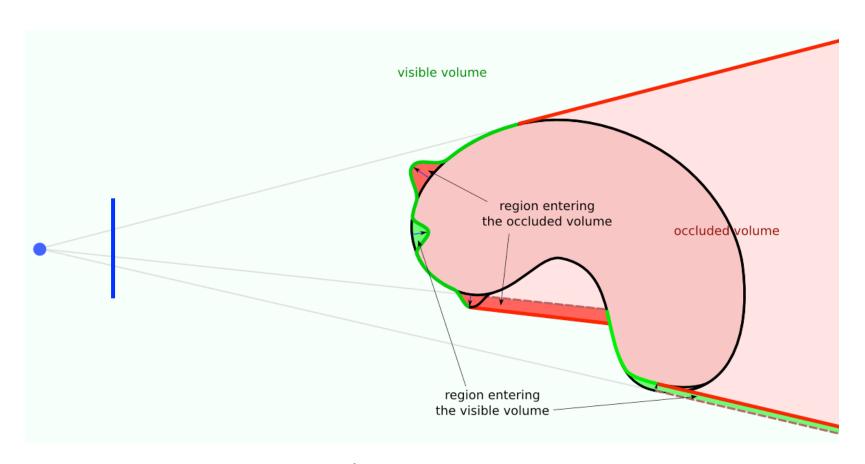
Another way to write the reprojection error

$$E(\Gamma) = -\int_{\Gamma \cup B} g(\mathbf{x}) \; \frac{\mathbf{x} \cdot \mathbf{n}}{\mathbf{x}_z^3} \; \nu_{\Gamma}(\mathbf{x}) \; d\sigma$$

Difference: the visibility term (depends on the surface globally)

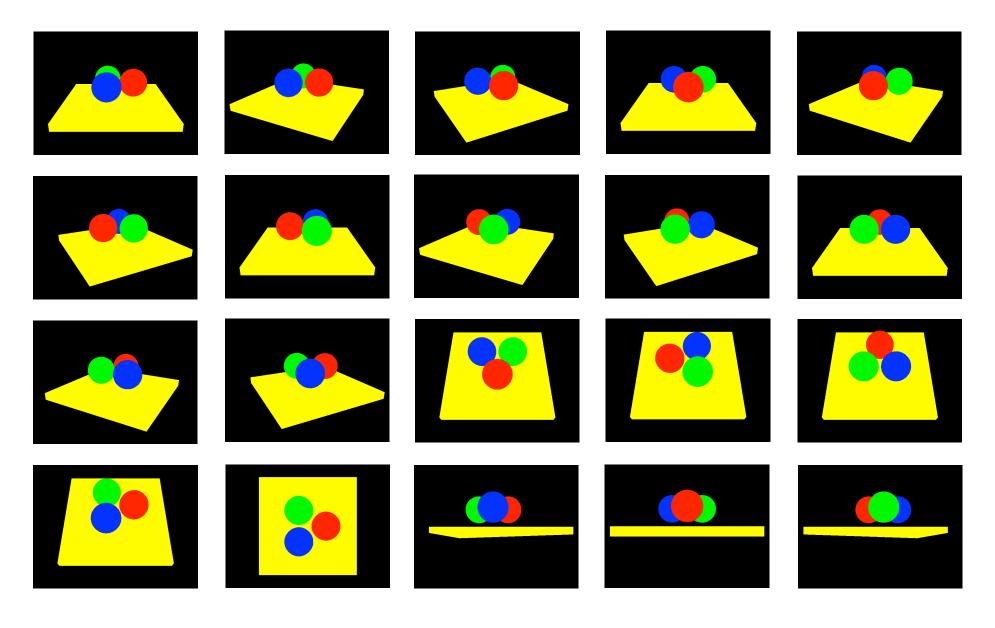
Consequence: weighted area minimization methods not applicable

Derivative of a Quantity Integrated over the Visible Volume

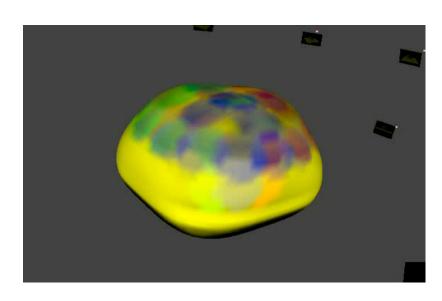


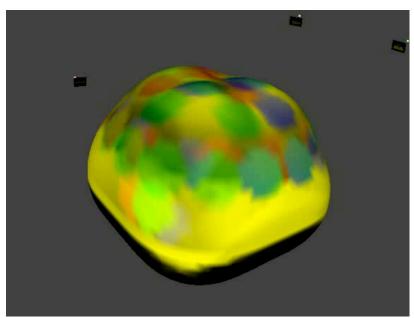
$$E(\Gamma) = -\int_{\Gamma \cup B} g(\mathbf{x}) \; \frac{\mathbf{x} \cdot \mathbf{n}}{\mathbf{x}_z^3} \; \nu_{\Gamma}(\mathbf{x}) \; d\sigma$$
$$dE(\Gamma) = -\nabla g \cdot \frac{\mathbf{x}}{\mathbf{x}_z^3} \nu_{\Gamma} + (g - g') \frac{\mathbf{x}^t \nabla \mathbf{n} \mathbf{x}}{\mathbf{x}_z^3} \delta(\mathbf{x} \cdot \mathbf{n}) \nu_{\Gamma}$$

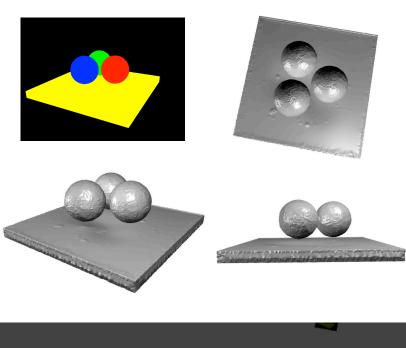
Synthetic Images

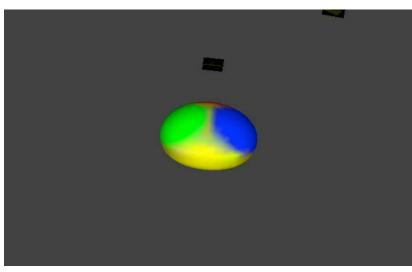


Synthetic Images

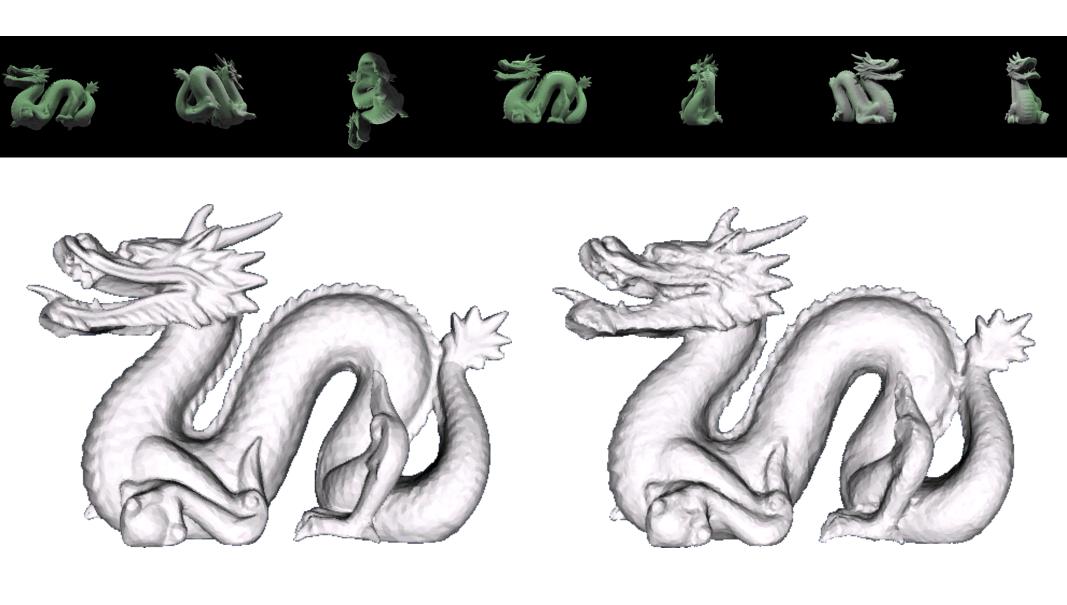




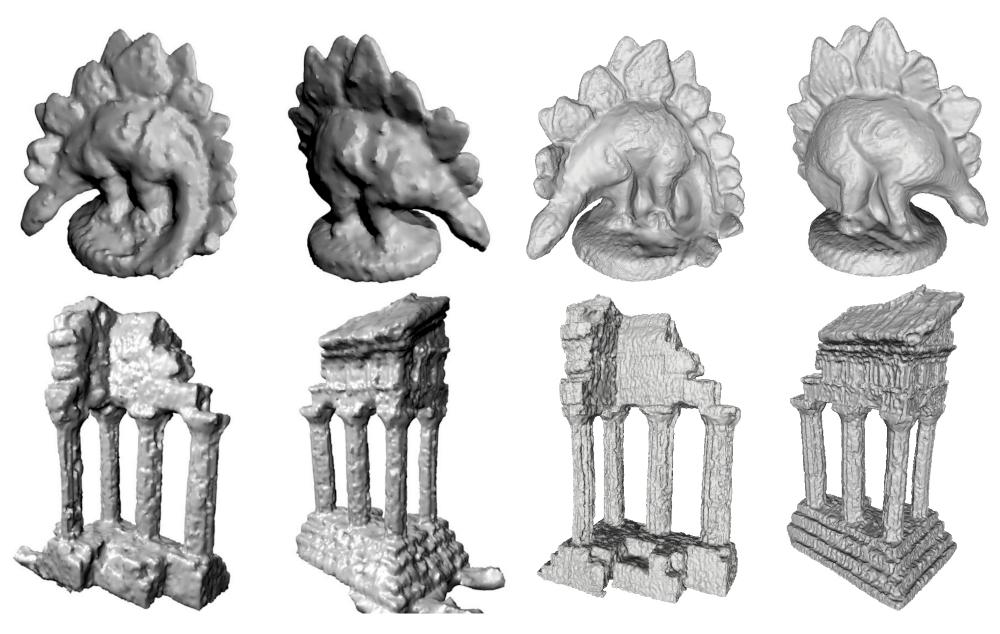




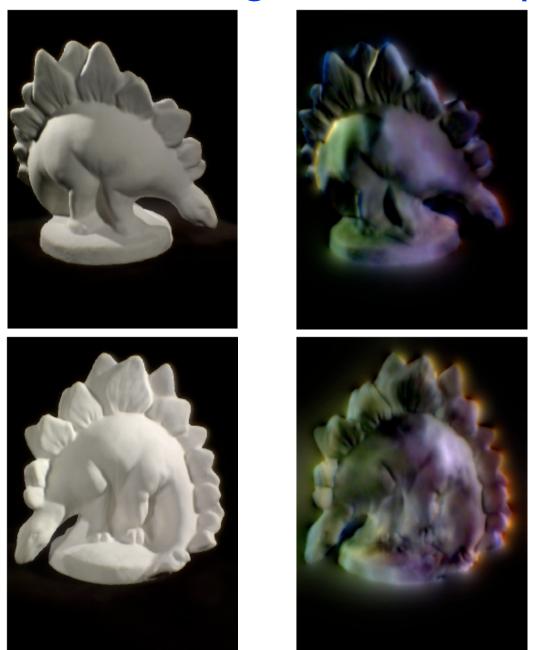
Results – Synthesized Lambertian Data



The Constant Brightness Assumption

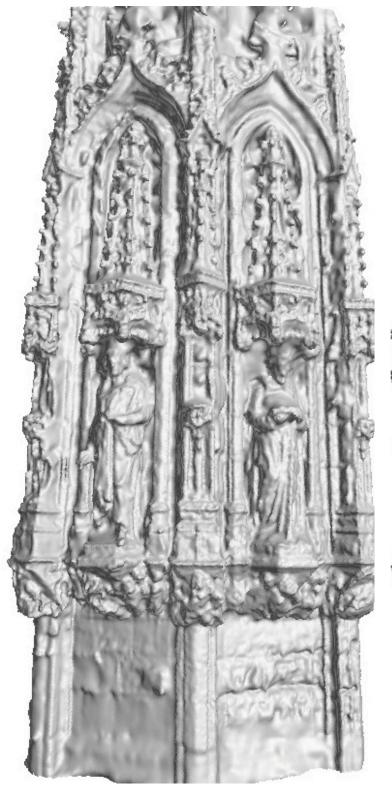


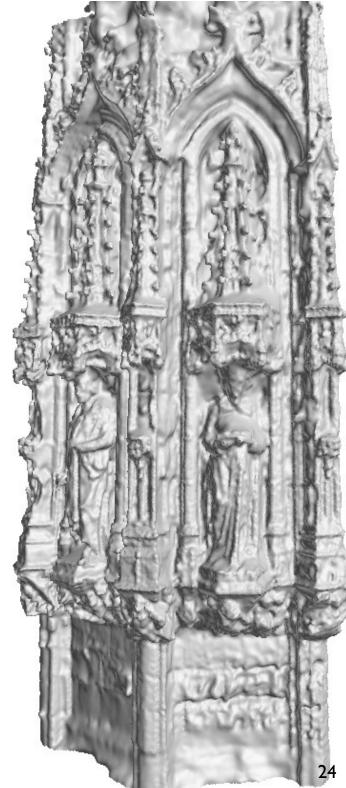
The Constant Brightness Assumption

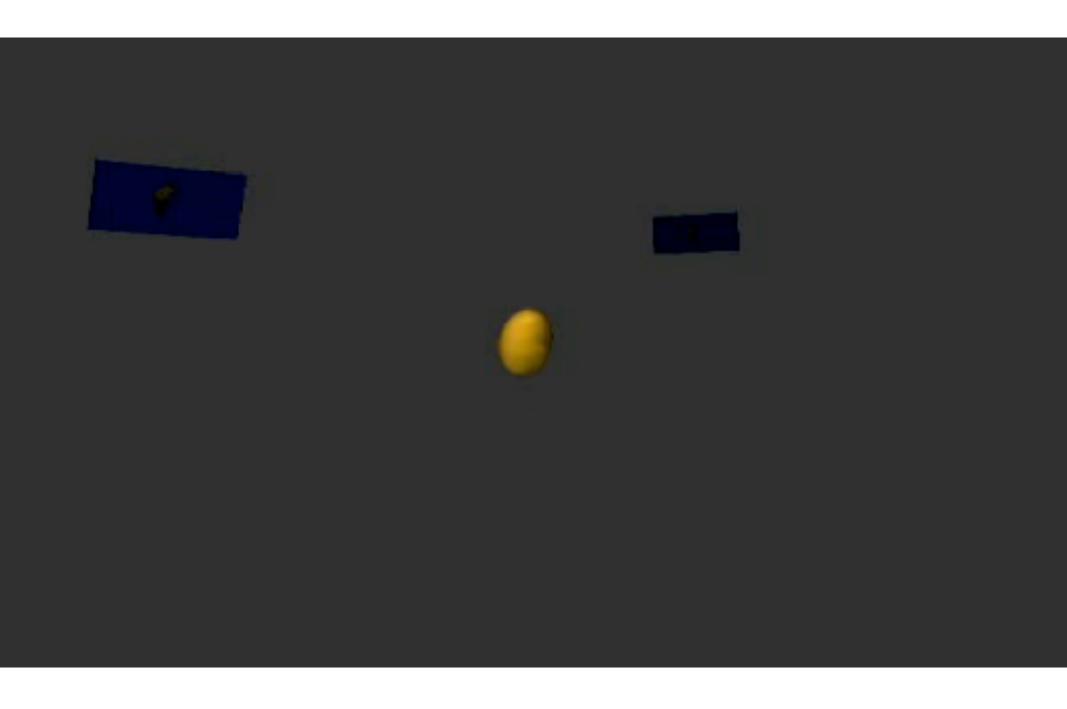


Leuven

750x500x500 voxels 2M+ triangles







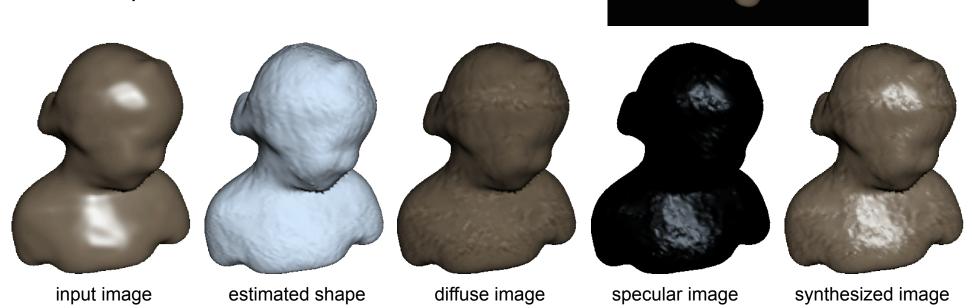
Extensions

- Specialize continuous formulation [ICCV'07] to discrete formulation (meshes) [BMVC'08]
- Go from Lambertian to more complex appearance models [IJCV'10,SSVM'09].
- Application to:
 - Shape from shading
 - Photometric stereo
 - Specular surfaces

Experiments

Textureless non-Lambertian surface

- Varying illumination
- Specular reflection varying according to the viewing direction
- Uniform specular/diffuse reflectance

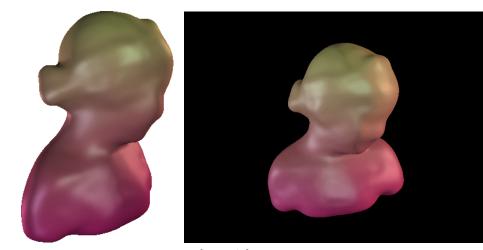


Result for the smoothed "bimba" image set (36 images) - textureless non-Lambertian surface case (uniform specular reflectance, varying illumination and viewpoint). 95% accuracy (0.33mm, 0.047, 0.040, 0.032, 0.095, 8.248), 1.0mm completeness (100%, 0.048, 0.041, 0.032, 0.095, 8.248), image diff 1.63

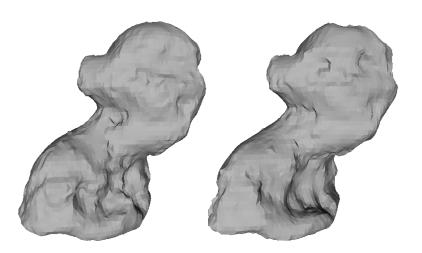
27

Comparison for non-Lambertian surfaces

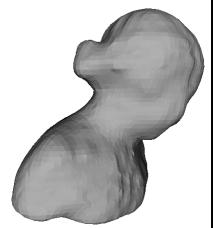
- Specular reflection varying according to the viewing direction
- Uniform specular reflectance but varying diffuse reflectance



input images



results using Pons et al (2007) (MI and CCL)



our result

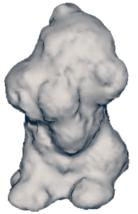
Result comparisom using the smoothed "bimba" image set (16 images)

Real images of glossy objects

- A fixed camera/light but a rotating object (= a fixed object and a rotating camera/light)
- Uniform specular reflectance but varying diffuse reflectance

input image

initial shape



estimated shape

diffuse reflectance

diffuse image

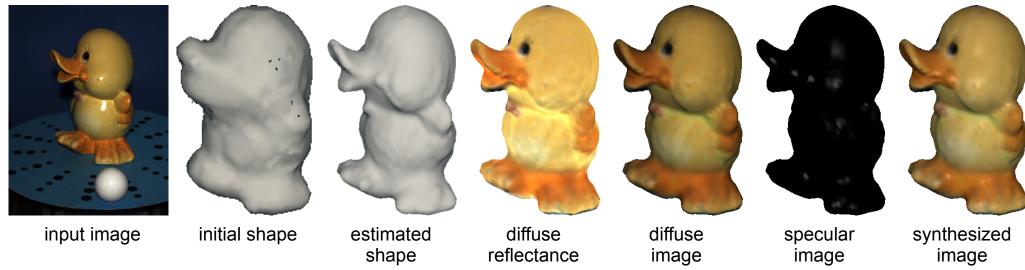
specular image

synthesized image

Result for the "saddog" image set (58 images)

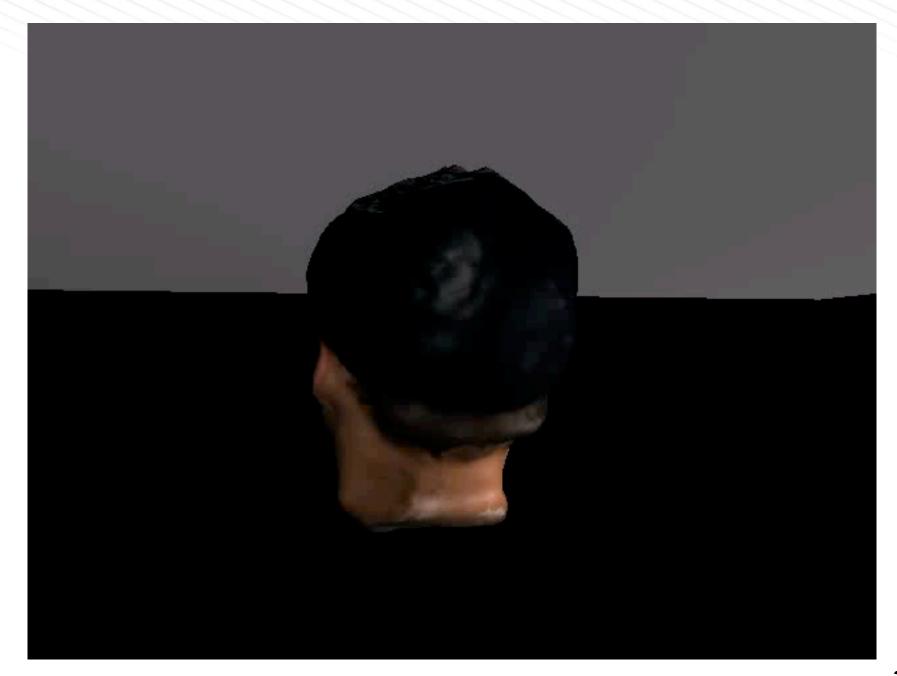
Real images of glossy objects

- A fixed camera/light but a rotating object (= a fixed object and a rotating camera/light)
- Uniform specular reflectance but varying diffuse reflectance

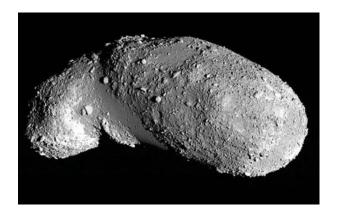


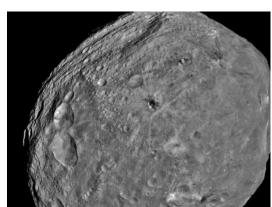
Result for the "saddog" image set (58 images)

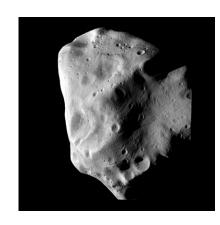
Experiments

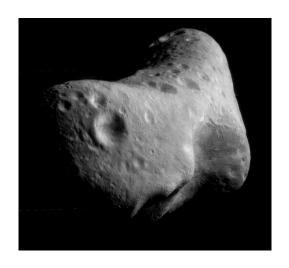


Application: reconstruction of asteroids

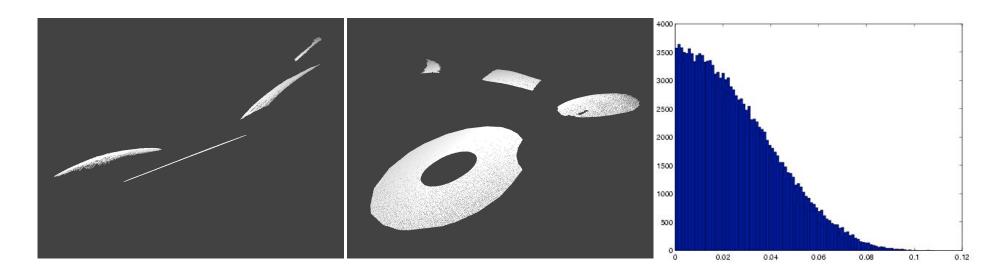








• Reconstruction of mirror surfaces

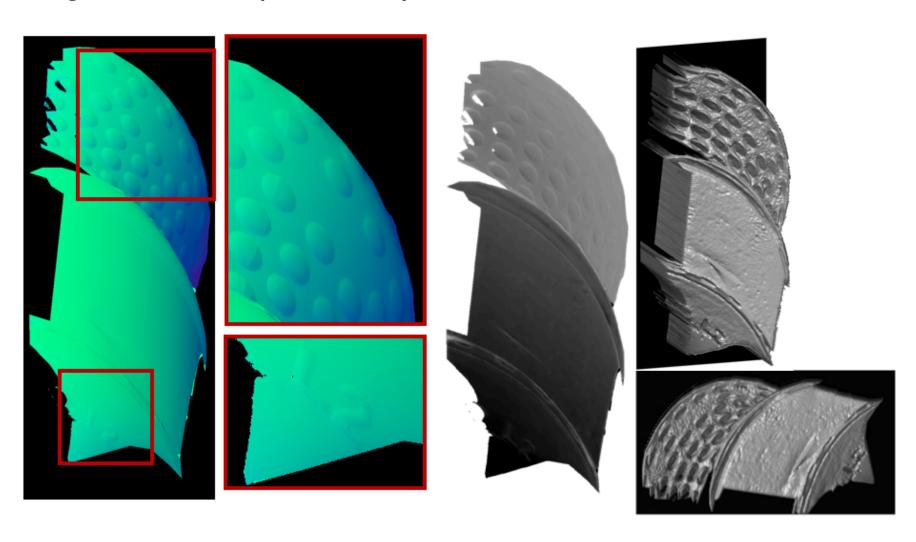


• Reconstruction of **specular** or **semi-transparent** surfaces taking into account photometry

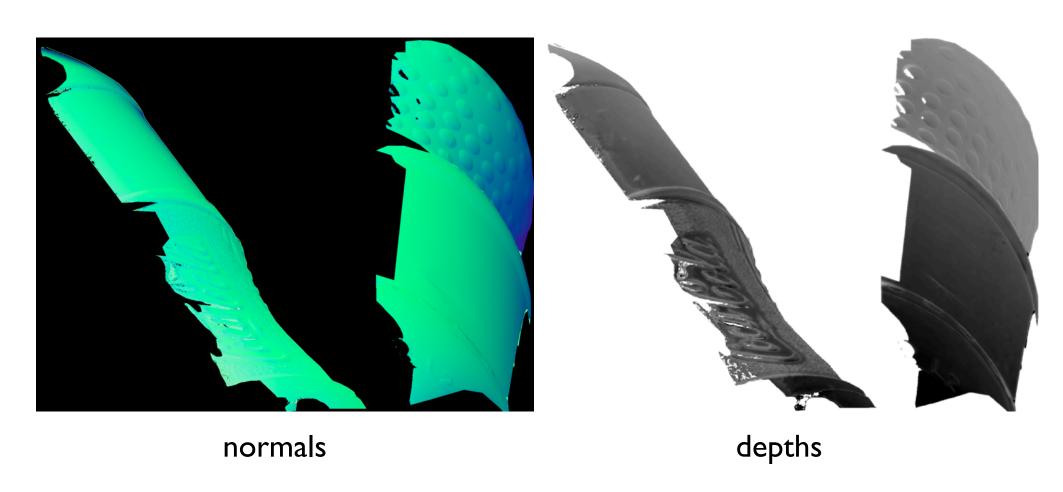


 Reconstruction of specular or semi-transparent surfaces taking into account photometry

 Reconstruction of specular or semi-transparent surfaces taking into account photometry



 Reconstruction of specular or semi-transparent surfaces taking into account photometry



Conclusions

- A study of the intuitive cost function for multi-view stereo
- Findings applicable to various surface representations and other cost functions (cost functions should be related to image generation process and noise)
- Natural fusion of stereo, silhouettes, and apparent contours
- Applicable for generative models for multi-view stereo, shapefrom-shading, photometric stereo, ...
- Conceptual link to object recognition...
- References: Gargallo et al. ICCV'07, Delaunoy et al. BMVC'08, Yoon et al. IJCV'10, Delaunoy et al. IJCV'11

Optimizing Photoconsistency in image-based 3D and appearance modeling

Peter Sturm, INRIA Grenoble, France

with Pau Gargallo, KukJin Yoon, Amaël Delaunoy, Emmanuel Prados, Visesh Chari, J.-P. Pons

