Transfer Learning for Visual Scene Understanding

Christoph Lampert

Qualcomm Augmented Reality Lecture Series
June 16, 2016
Ultimate goal
Automatic systems that learn and act autonomously
Medium term goal
Automatic systems that can analyze and interpret data

"Three men sit at a table in a pub, drinking beer. One of them talks while the other two listen."

Image: British Broadcasting Corporation (BBC)
State of the art
Analyze individual aspects of visual data

Scene Classification
- indoors
- in a pub

Action Classification
- drinking
- talking

Object Recognition
- three persons
- one table
- three glasses
State of the art

Task 1

Task 2

Task 3

Tabula Rasa Learning
Future challenge: towards continuously improving systems
Research topics

Machine Learning
- Multi-task learning
- Domain adaptation
- Learning to learn
- Learning with weak supervision

Computer Vision
- Object recognition
- Object localization
- Semantic segmentation
- Attribute-based classification
Semantic Image Segmentation
State-of-the-art: Convolutional Neural Networks (CNNs)

- deep neural network, all layers convolutional
- predict per-pixel output from per-pixel input
- trained from images with per-pixel ground truth
State-of-the-art: Convolutional Neural Networks (CNNs)

- training set \(\{(x^1, y^1), \ldots, (x^m, y^m)\} \)
- images \(x^i \), ground truth segmentation masks \(y^i \)
- CNN output \(f_{u,c}(x; \theta) \) (probability of class \(c \) at location \(u \))
- measure quality of one prediction by a loss function, e.g.

\[
\text{loss}(f_{u,c}, y) = - \sum_c \sum_u y_{u,c} \log f_{u,c}(x)
\]

- learn CNN parameters by minimizing loss over training set

\[
\min_{\theta} \sum_{i=1}^{m} \text{loss}(f_{u,c}(x^i), y^i)
\]

Problem: creating per-pixel annotation cost a lot of time
Weakly-Supervised Semantic Segmentation

- train from images with per-image class labels (tags)
 - cat
 - sofa
 - table
 - chair
 - horse
 - motorbike
 - ...

- annotation is much weaker, but much easier to generate
Weakly-Supervised Semantic Segmentation

Training:
- training set \(\{(x^1, T^1), \ldots, (x^m, T^m)\} \)
- images \(x^i \), tag annotation \(T^i \), e.g. \(T^i = \{\text{cat, dog}\} \)

how to measure quality of a predicted segmentation mask?
1) pool per-pixel scores \(f_{u;c}(x) \) into per-image scores, \(G_c(x) \)
2) measure if correct classes were predicted, e.g.

\[
\text{loss}(x, T) = - \sum_{c \in T} \log G_c(x) - \sum_{c \in \mathcal{C} \setminus T} \log(1 - G_c(x))
\]

Problem: it doesn’t work very well...

SEC: Seed, Expand and Constrain

VGG-style deep network (16 layers, all convolutional):

- pre-trained classification network
- image dataset to learn from (with per-image class labels)

Main contribution: new, three-part, loss function

$$L_{seed}(x, f(x; \theta), T) + L_{exp.}(f(x; \theta), T) + L_{cnstr.}(x, f(x; \theta))$$
Seed loss:
- network should reproduce weak cues from classification network

Expand loss:
- network should produce reasonable object sizes

Constrain loss:
- network should respect boundaries (image gradients)
Observation:

- Convolutional networks achieve very good results in full-image classification tasks.
 - If we know which part of the image caused the network to make its decision, we can find out where the object is.

SEC: Seed, Expand and Constrain

Multiple possibilities:

1) gradient back-propagation from label to image
 "which change to the image affects the score the most?"

2) mask out different image regions and observe the score

3) use a network with spatial representation until the last layer

Images: adapted from [Zhou, Khosla, Lapedriza, Oliva, Torralba. "Learning Deep Features for Discriminative Localization" CVPR 2016].
SEC: **Seed, Expand and Constrain**

Observation:

- Heatmaps, $g_u(x)$, from classification network gives only rough localization, not segmentation mask

- We trust only the most confident core areas \rightarrow **seed regions**

$$S_c(x) = \{ u : g_u(x) \geq 0.2\alpha \} \quad \text{for} \quad \alpha = \max_v g_v(x)$$

(can be precomputed)
Seed loss:

\[L_{seed}(X, f(X), T) = \frac{-1}{\sum_{c \in T} |S_c|} \sum_{c \in T} \sum_{u \in S_c} \log f_{u,c}(X) \]

The network should produce correct labels where weak cues tell it to.

SEC: Seed, Expand and Constrain
Observation: Pooling method influences predicted object sizes

- **max pooling**: class score is maximum of per-pixel scores
 all weight lies on a single pixel → bias towards small objects
- **average pooling**: class score is average of pixel scores
 all pixels have the same weight → bias towards large objects
- **ideal**: all object pixels contribute, but none of the others

* [Zhou, Khosla, Lapedriza, Oliva, Torralba. "Learning Deep Features for Discriminative Localization" CVPR 2016],
† [Oquab, Bottou, Laptev, Sivic; "Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural Networks", CVPR 2015]
Proposed: global weighted rank pooling (GWRP):

- sort pixels by their activation score, \(i_1, \ldots, i_n \)

\[
f_{i_1, c}(x) \geq f_{i_2, c}(x) \geq \cdots \geq f_{i_n, c}(x)
\]

- pool by linear combination with decreasing weights:

\[
G_c(x; d_c) = \frac{1}{Z(d_c)} \sum_{j=1}^{n} (d_c)^{j-1} f_{i_j, c}(x), \quad \text{for } Z(d_c) = \sum_{j=1}^{n} (d_c)^{j-1}.
\]

- \(d_c \): decay parameter for class \(c \).

Generalizes other poolings:

- \(d_c = 0 \): max pooling \(d_c = 1 \): average pooling
- \(0 < d_c < 1 \): put more emphasis on locations with high scores
Our choices: (for $n = 41 \times 41$)

- for classes c that are in the image: $d_+ = 0.996$
 \rightarrow 50% of weight on top 10% pixels

- for classes c that are not in the image: $d_- = 1$
 \rightarrow max-pooling, no pixel should have high object score

- for background class: $d_{bg} = 0.999$
 \rightarrow 50% of weight on top 30% pixels

Expresses our prior belief about object sizes.
Loss function:

\[
L_{\text{exp.}}(f(X), T) = -\frac{1}{|T|} \sum_{c \in T} \log G_c(X; d_+) - \log G_{c_{\text{bg}}}(X; d_{\text{bg}}) \\
- \frac{1}{|C \setminus T|} \sum_{c \in C \setminus T} \log(1 - G_c(X; d_-))
\]
Observation:

- applying a fully-connected conditional random field (CRF) to the network output yields crisp segmentation.

Can we make use of this property also at training time?

Images: [Chen, Papandreou, Kokkinos, Murphy, Yuille. "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs", ICLR 2015]
SEC: Seed, Expand and Constrain

Main idea:

• learn network such that per-pixel predictions look like CRF predictions (in particular: follow image boundaries)

• $Q_{u,c}(x)$ is output of CRF with CNN outputs $f_{u,c}(x)$ as inputs

• measure difference between CNN output and CRF output (by Kullback-Leibler divergence)

$$\text{KL}(p||q) = \sum_i p_i \frac{\log p_i}{\log q_i}$$
Loss function:

\[
L_{\text{constr.}}(x, f(x)) = \frac{1}{|I|} \sum_{u \in I} \sum_{c \in C} Q_{u,c}(x) \log \frac{Q_{u,c}(x)}{f_{u,c}(x)}
\]
Training

- Continuous in all parameters ("end-to-end differentiable")
- Gradients computed automatically using Theano
- Stochastic gradient descent (backpropagation)
 - Minibatches (size 15)
 - 8000 iterations
 - Dropout rate 0.5
 - Weight decay 0.0005
 - Initial learning rate 0.001, decreased every 2000 iterations
- 7-8 hours on GeForce TITAN-X GPU

Data

- PASCAL VOC 2012 challenge: 20 object classes + background
- Training set: 10,582 weakly annotated images
- Test set: 1456 images (no public labels, uses evaluation server)
- Evaluation by mean intersection-over-union
<table>
<thead>
<tr>
<th>PASCAL VOC 2012 test set</th>
<th>MIL-FCN</th>
<th>CCNN</th>
<th>MIL+ILP+SP-sppxl</th>
<th>SEC (proposed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>background</td>
<td>≈71†</td>
<td>74.7</td>
<td>83.0</td>
<td></td>
</tr>
<tr>
<td>aeroplane</td>
<td>24.2</td>
<td>38.8</td>
<td>55.6</td>
<td></td>
</tr>
<tr>
<td>bike</td>
<td>19.9</td>
<td>19.8</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>bird</td>
<td>26.3</td>
<td>27.5</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td>boat</td>
<td>18.6</td>
<td>21.7</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td>bottle</td>
<td>38.1</td>
<td>32.8</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td>bus</td>
<td>51.7</td>
<td>40.0</td>
<td>70.2</td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>42.9</td>
<td>50.1</td>
<td>58.8</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>48.2</td>
<td>47.1</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>chair</td>
<td>15.6</td>
<td>7.2</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>37.2</td>
<td>44.8</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td>diningtable</td>
<td>18.3</td>
<td>15.8</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>43.0</td>
<td>49.4</td>
<td>67.4</td>
<td></td>
</tr>
<tr>
<td>horse</td>
<td>38.2</td>
<td>47.3</td>
<td>59.4</td>
<td></td>
</tr>
<tr>
<td>motorbike</td>
<td>52.2</td>
<td>36.6</td>
<td>70.7</td>
<td></td>
</tr>
<tr>
<td>person</td>
<td>40.0</td>
<td>36.4</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>plant</td>
<td>33.8</td>
<td>24.3</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>sheep</td>
<td>36.0</td>
<td>44.5</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td>sofa</td>
<td>21.6</td>
<td>21.0</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td>train</td>
<td>33.4</td>
<td>31.5</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td>tv/monitor</td>
<td>38.3</td>
<td>41.3</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>25.7</td>
<td>35.6</td>
<td>35.8</td>
<td>51.5</td>
</tr>
</tbody>
</table>

†: inferred from average
Failure cases (aka, future work):

- consistently co-occurring distractors (trains + tracks, boat + water)
- confusion between objects (chair vs. sofa)
- disconnected object (usually due to occlusion)
Insights from Ablation Study

Most important term in loss function: localization seeds

<table>
<thead>
<tr>
<th>loss function</th>
<th>L_{expand}</th>
<th>L_{seed}</th>
<th>$L_{\text{cnstr.}}$</th>
<th>$L_{\text{seed}} + L_{\text{cnstr.}}$</th>
<th>$L_{\text{expand}} + L_{\text{cnstr.}}$</th>
<th>$L_{\text{seed}} + L_{\text{expand}}$</th>
<th>full SEC loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>mIoU</td>
<td>27.8</td>
<td>49.2</td>
<td>–</td>
<td>49.4</td>
<td>17.2</td>
<td>45.7</td>
<td>50.7</td>
</tr>
</tbody>
</table>

Ground Truth Image $L_{\text{semi}} + L_{\text{bound}}$ $L_{\text{class}} + L_{\text{bound}}$ $L_{\text{class}} + L_{\text{semi}}$ Full Loss
Insights from Ablation Study

Global Weighted Rank Pooling leads to better object sizes than max-pooling or average-pooling

<table>
<thead>
<tr>
<th>Model</th>
<th>foreground fraction</th>
<th>mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMP</td>
<td>21.0</td>
<td>47.3</td>
</tr>
<tr>
<td>GAP</td>
<td>37.5</td>
<td>45.1</td>
</tr>
<tr>
<td>GWRP</td>
<td>26.7</td>
<td>50.7</td>
</tr>
<tr>
<td>ground truth</td>
<td>27.1</td>
<td>–</td>
</tr>
</tbody>
</table>
Summary

Transfer Learning for Visual Scene Understanding
- Transfer information between different learning tasks
 → less training data or less necessary annotation

Weakly-Supervised Image Segmentation
- annotation is weaker (image tags) than the desired system output (segmentation masks)
- requires transfer of information and/or prior knowledge

SEC: Seed, Expand and Constrain [arXiv:1603.06098 [cs.CV]]
- transfer: weak location cues from classification network
- prior knowledge: typical objects sizes
- prior knowledge: objects boundaries align with image gradients
- code and pretrained models will be online
Thanks to...

Our team at IST Austria:

Alex Kolesnikov Georg Martius Asya Pentina Amélie Royer Alex Zimin

Funding Sources:

IST Austria erc