
Secure Boot and Image Authentication
Technical Overview

Ryan P Nakamoto
Staff Engineer, Product Security
Qualcomm Technologies, Inc.
October 2016

2

Qualcomm Technologies Inc.

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries.

Other products and brand names may be trademarks or registered trademarks of their respective owners.

Qualcomm Technologies, Inc.

5775 Morehouse Drive

San Diego, CA 92121

U.S.A.

©2016 Qualcomm Technologies, Inc.

All Rights Reserved.

Disclaimer

3

Contents

1 Overview 4

2 Signed Image Format 5

3 Image Parsing and Loading Process 6

4	 Certificates	Chain	and	Format	 7

5 Signatures 12

6 Summary 14

4

Secure	boot	is	defined	as	a	boot	sequence	in	which	each	software	image	to	be	executed	is	authenticated	by	software	that	was	

previously	verified.		This	sequence	is	designed	to	prevent	unauthorized	or	modified	code	from	being	run.		Our	chain	of	trust	is	built	

according	to	this	definition,	starting	with	the	first	piece	of	immutable	software	to	be	run	out	of	read-only-memory	(ROM).		This	first	

ROM	bootloader	cryptographically	verifies	the	signature	of	the	next	bootloader	in	the	chain,	then	that	bootloader	cryptographically	

verifies	the	signature	of	the	next	software	image	or	images,	and	so	on.

On	the	applications	processor	the	first	piece	of	ROM-based	software	mentioned	above,	which	we	call	the	Primary	BootLoader	

(PBL),	typically	loads	and	authenticates	a	Secondary	BootLoader	(SBL)	or	eXtensible	BootLoader	(XBL)	as	the	next	image	to	

be	run.		This	image	then	loads	and	authenticates	a	feature-rich	applications	bootloader	such	as	Little	Kernel	(LK)	or	the	Unified	

Extensible	Firmware	Interface	(UEFI)	that	is	specific	to	the	Operating	System	(OS)	that	it	will	subsequently	load.		In	modern	

Qualcomm	Technologies	products,	these	software	images	are	all	standard	Executable	and	Linkable	Format	(ELF)	images.

Like	most	digitally	signed	software,	these	image	signatures	include	a	certificate	chain.		The	“Attestation	certificate”	refers	to	the	

lowest	level	certificate	authorizing	the	signature	of	the	software	image.		This	certificate	is	signed	by	the	“Attestation	CA	certificate”	

which	is	in	turn	signed	by	the	“Root	CA	certificate”.		The	Root	CA	certificate	is	validated	by	computing	its	hash	and	comparing	to	

a	value	stored	either	in	eFuse	or	in	ROM	(eFuse	is	a	set	of	hardware	embedded	one-time	programmable	bits	that	once	“blown”	

cannot	be	reverted).		This	stored	Root	CA	hash	value	is	provisioned	to	the	device	by	the	OEM,	giving	them	full	control	of	the	

device’s	cryptographic	root	of	trust.		The	certificate	chain	hierarchy	is	shown	in	Figure	3	and	later	described	in	more	detail.	Two-

certificate	chains	are	also	supported,	wherein	the	Attestation	certificate	is	signed	directly	by	the	Root	CA	certificate.

Unlike other signed software images, the signature for Qualcomm Technologies signed images is only computed over a single

segment in the image and not the entire image. The segment containing the signature is called the hash segment. This hash

segment is a collection of the hash values of the other ELF segments that are included in the image. In other words we sign the

collection	of	ELF	segment	hashes,	rather	than	signing	the	entire	ELF	image.		This	representation	is	designed	to	relax	memory	size	

requirements	and	increases	flexibility	during	loading.		The	Attestation	certificate	used	to	verify	the	signature	on	this	hash	segment	

also	includes	additional	fields	that	can	bind	restrictions	to	the	signature	(preventing	“rolling	back”	to	older	versions	of	the	software	

image,	restricting	the	signature	to	a	particular	type	of	software	image,	a	particular	model	of	hardware,	a	particular	OEM,	etc.).		

The following sections of this document discuss the format of our signed ELF images, the process of loading and authenticating

those	images,	certificate	contents,	and	signature	algorithms	in	greater	detail.

1 Overview

5

As	previously	mentioned,	the	software	image	is	an	ELF	file	and	contains	the	standard	ELF	and	program	headers.		Both	32-bit	and	

64-bit	ELF	classes	are	supported.		See	Figure	1	for	an	example	32-bit	ELF	image.

2 Signed Image Format

The hash table segment, or simply hash segment, typically follows the ELF and Program headers in the image. It contains its own

40-byte	header	which	specifies	the	size	of	the	entire	hash	segment,	the	size	of	the	table	of	hashes,	the	size	of	the	attestation	

signature,	and	the	size	of	the	certificate	chain	(all	in	bytes).		This	hash	table	contains	the	SHA-256	digest	of	each	segment	in	

the ELF image, as well as a digest for the ELF and Program headers. It is important to authenticate these headers since they

contain	important	information	(addresses,	execution	entry	point,	etc.).		The	signature	for	the	image	is	computed	over	this	table	of	

digests	and	appended	to	it,	along	with	the	certificate	chain,	to	form	the	hash	segment.		The	entry	in	the	hash	table	corresponding	

to	the	hash	segment	itself	is	empty,	as	the	entire	hash	segment	is	authenticated	during	signature	verification.		The	signature	is	

accompanied	by	a	certificate	chain,	as	seen	in	Figure	2.

Figure	1:	ELF	and	PROGRAM	headers	in	a	32-bit	ELF

6

3 Image Parsing and Loading Process

1ELF	for	ARM	architecture	–	http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044f/IHI0044F_aaelf.pdf

Figure	2:	Hash	Table	Segment	and	Signature

Elf Segment 1

Hash Table Segment

Program Headers

Elf Header

Hash(Elf Hdr || Prog. Hdr)
<Empty>
Hash(Elf Segment 1)
Hash(Elf Segment 2)
Hash(Elf Segment 3)

Signature

Cert Chain

Hash Table Header

Elf Segment 2

Elf Segment 3

Attestation Cert

Root Key Hash

CA Cert
Verify Signature

Root Cert

validate

Verify Signature

Verify Signature

When	an	image	is	to	be	authenticated	and	executed,	it	must	fi	rst	be	loaded	from	persistent	storage	into	internal	memory.		Internal	

memory	is	generally	protected	and	trusted	but	only	available	when	the	device	is	powered.		External	fl	ash	storage	and	external	

RAM	are	accessible	by	other	entities	and	thus	considered	untrusted.		In	order	to	ensure	the	image	has	not	been	modifi	ed	or	

tampered	with,	it	must	be	authenticated	within	the	trust	boundary	in	internal	memory	before	being	executed.

First	the	ELF	header	is	loaded	from	storage,	parsed,	and	validated.		The	ELF	header	specifi	es	a	number	of	things,	including	

program	and	section	header	sizes	and	off	sets,	as	well	as	the	virtual	address	of	the	image’s	entry-point.		Next	the	Program	headers	

are	loaded,	parsed,	and	validated.		See	the	ELF	specifi	cation	for	ARM	architecture	for	more	detail	on	ELF1.

One and only one of the program headers must represent a hash segment, which is indicated by a segment type value in the

program header’s p_fl ags	fi	eld.		When	that	hash	segment	is	found,	it	is	loaded	to	internal	memory	for	authentication.		The	hash	

segment	is	then	authenticated	by	verifying	its	signature	and	accompanying	certifi	cate	chain	(further	detailed	in	the	following	

sections).		The	ELF	headers	and	program	headers	are	hashed	and	compared	to	their	corresponding	entry	in	the	authenticated	

hash	table	segment.		Each	non-paged	LOAD	segment	in	the	ELF	fi	le	is	then	loaded	from	storage	into	internal	memory	and	

hashed. Each segment’s calculated hash is compared to its corresponding entry in the authenticated hash table in the same order

as	it	appears	in	the	program	header	(segments	therefore	cannot	be	reordered).		Since	the	hash	segment	is	verifi	ed,	comparing	

computed	hashes	of	segments	and	the	headers	provides	equivalent	security	to	verifying	a	signature	of	the	entire	image	while	also	

allowing	for	loading	and	authenticating	on	a	per-segment	basis.

7

4	 Certificates	Chain	and	Format

2In	a	two-certificate	chain,	the	Attestation	certificate	appears	first	and	is	signed	directly	by	a	self-signed	Root	certificate	that	follows.

When	headers	or	segments	are	loaded	from	external	storage,	their	destination	address	and	size	in	memory	is	verified	to	be	fully	

contained	in	a	whitelist	to	confirm	that	they	are	strictly	confined	to	the	memory	space	allotted	for	them.		This	is	designed	to	

prevent	data	from	being	written	to	unauthorized	memory	addresses,	addresses	where	other	data	already	resides,	or	from	spilling	

over	into	another	region.		When	calculating	these	offsets	and	sizes,	the	arithmetic	is	checked	to	ensure	the	result	does	not	

overflow	(i.e.	wrap	around	past	zero).		These	checks	are	also	performed	on	the	other	headers,	the	certificates,	and	other	items	

where	offsets	and	sizes	are	calculated.	

The	certificate	chain	can	consist	of	two	or	three	certificates,	all	following	the	ITU-T	X.509	v3	format.		The	certificate	chain	

includes	an	Attestation	certificate,	(optionally)	an	Attestation	CA	certificate2,	and	a	Root	CA	certificate.		Each	is	signed	by	the	next	

certificate	in	the	chain,	as	shown	in	Figure	3.		The	SHA-256	hash	digest	of	the	Root	CA	certificate	must	match	the	value	stored	in	

eFuse or stored in ROM in order to anchor the chain of trust.

A	two-certificate	chain	is	designed	to	reduce	the	on-device	verification	time	and	certificate	chain	size	of	each	image	by	one	

certificate.		In	exchange,	the	server-side	signer	has	less	flexibility	in	authorizing	entities	to	generate	Attestation	certificates	(the	job	

of	the	Attestation	CA).		This	server-side	signer	also	loses	the	ability	to	revoke	that	authorization	since	the	Root	CA	directly	signs	

Attestation	certificates	in	this	model	and	is	anchored	to	eFuses	on-device.		

Figure	3:	Certificate	Chain	Structure

The	Root	CA	and	Attestation	CA	certificates	are	typical	X.509	certificates	containing	the	same	fields	as	those	you	might	find	

securing	a	web	browsing	session.		The	Attestation	certificate	however,	will	include	additional	details	in	its	Org	Unit	(OU)	fields.		All	

certificates	are	fully	conformant	to	X.509.		Profiles	1-3	below	display	certificate	fields	taken	from	the	certificate	chain	of	a	signed	

Qualcomm®	Snapdragon™	820	processor	eXtensible	BootLoader	(XBL)	image.

8

Profi	le	1:	Root	Certifi	cate	Profi	le

9

Profi	le	2:	Attestation	CA	Certifi	cate	Profi	le

The	calculated	SHA-256	digest	of	the	Root	CA	certifi	cate	seen	in	Profi	le	1	would	need	to	match	the	value	in	the	device’s	eFuse	or	

ROM	in	order	for	this	Root	CA	certifi	cate	to	be	valid	on	that	device.		

The	Basic	Constraints	indicate	that	this	certifi	cate	can	sign	other	certifi	cates	(CA=TRUE).		We	see	that	the	Attestation	CA	certifi	cate	

can	also	sign	certifi	cates,	but	only	a	leaf	certifi	cate	like	the	Attestation	certifi	cate	(CA=TRUE, pathLen=0).		Both	certifi	cates’	Key	

Usage	indicate	they	are	authorized	for	certifi	cate	signatures.		The	Subject	Key	Identifi	er	and	Authority	Key	Identifi	er	fi	elds	indicate	

that	the	Root	CA	is	the	authority	for	the	Attestation	CA	(and	the	Attestation	CA	is	the	authority	for	the	Attestation	certifi	cate	

below).		These	two	fi	elds	are	included	mostly	for	tracking	rather	than	for	security	purposes.

10

Profi	le	3:	Attestation	Certifi	cate	Profi	le

The	Basic	Constraints	of	the	Attestation	certifi	cate	indicate	that	this	certifi	cate	cannot	sign	other	certifi	cates	(CA=FALSE)	but	that	

Key	Usage	indicates	it	is	authorized	for	digital	signatures	(signing	the	software	image).		While	the	same	Root	CA	and	Attestation	

CA	may	be	used	for	multiple	images	on	multiple	devices,	a	new	Attestation	certifi	cate	is	generated	for	each	signed	image	instance.			

The	Attestation	certifi	cate	contains	OU	fi	elds	which	may	provide	information	or	restrictions	on	that	signed	image	instance.		The	

values	found	in	OU	fi	elds	may	then	be	validated	against	those	read	from	eFuse	or	explicitly	expected	by	the	verifying	software.		We	

discuss	the	common	OU	fi	elds	below.

11

Qualcomm	Technologies	OU	Fields

The	OU	fields	are	designed	to	cryptographically	bind	various	attributes	to	the	signature	and	to	provide	information	about	the	

image and/or signature.

01 SW_ID
The	software	ID	binds	the	signature	to	a	particular	version	of	a	particular	software	image.		This	64-bit	value	is	a	concatenation	of	

those two values:

01 SW_ID VERSION (32-bit) || IMAGE_ID (32-bit)

The	value	“0x0000000000000000”	indicates	version	0	of	IMAGE_ID	0	(XBL).		If	eFuse	values	indicated	that	the	current	version	was	

“1”,	then	this	image	would	fail	verification.		Version	enforcement	is	done	in	order	to	prevent	loading	an	older,	perhaps	vulnerable,	

version	of	the	image	that	has	a	valid	signature	attached.		The	IMAGE_ID	check	is	enforced	to	confirm	that	we	are	loading	and	

verifying	the	software	image	that	is	expected	to	execute	next	–	in	this	case,	XBL	Version	0.

02 HW_ID
The	hardware	ID	binds	the	signature	to	a	particular	device	family,	model,	and	OEM.		In	the	example	shown,	the	HW_ID	is	

constructed as follows:

02 HW_ID MSM_ID (32-bit) || OEM_ID (16-bit) || MODEL_ID (16-bit)

The	value	“0x009470E12A703DB9”	indicates	that	this	image	was	signed	for	a	device	with	MSM_ID	0x009470E1,	OEM_ID	0x2A70, and

MODEL_ID	0x3DB9.		The	MSM_ID	is	a	unique	identifier	chosen	by	Qualcomm	Technologies	to	designate	a	specific	chip-type	within	

a	given	chip-family.		The	fields	contained	in	HW_ID	must	match	those	provisioned	in	eFuse	for	the	signature	to	be	valid.		Therefore	

this	signature	would	be	invalid	on	any	other	chip	model	or	chip-type.		It	would	also	be	invalid	on	a	matching	device	model	and	

chip-type	with	a	differing	OEM_ID	value	in	eFuse;	a	legitimate	signature	created	by	OEM	“A”	will	not	be	valid	on	any	other	OEM’s	

device	–	even	for	the	exact	same	software	image	version	and	type	on	a	device	using	the	exact	same	model	and	chip-type.

03	DEBUG
The	Debug	OU	field	indicates	whether	debug	capability	should	be	disabled	or	not.		In	the	certificate	above,	the	debug	value	is	set	

to	DISABLED	(“0x0000000000000002”).

04 OEM_ID
OU	04	is	an	easy-to-read	copy	of	the	OEM_ID	from	the	HW_ID	field,	and	is	for	information	only.		The	value	of	OEM_ID	is	enforced	in	

the	HW_ID	validation	described	above.

05 SW_SIZE
This	OU	field	indicates	the	size	of	the	data	being	signed	(not	the	size	of	the	software	image).		From	Figure	2	we	see	this	includes	

the	Hash	Table	Header	(40-bytes)	and	the	Hash	Table	Entries	(32-bytes	per	entry).		The	value	of	0x248 indicates that there are 17

segments	in	this	image.		This	OU	field	is	for	information	only.

06 MODEL_ID
OU	06	is	an	easy-to-read	copy	of	the	MODEL_ID	from	the	HW_ID	field,	and	is	for	information	only.		The	value	of	MODEL_ID	is	

enforced	in	the	HW_ID	validation	described	above.

12

 3Drawn	from	text	specifi	cation	in	PKCS	#1	v2.1:	RSA	Cryptography	Standard

07 SHA256 / SHA1
This	OU	fi	eld	indicates	which	hash	algorithm	is	used	to	calculate	the	hash	during	signature	verifi	cation.		SHA-256	and	SHA-1	are	

the	current	options.		The	example	specifi	es	SHA-256	(“0001”)	as	the	hash	algorithm.

5 Signatures

Signature	Algorithms
The	RSASSA-PKCS#1	v1.5	signature	scheme	is	supported	with	SHA-256	or	SHA-1	as	the	underlying	hash	algorithm.		Newer	

chipsets	also	support	RSASSA-PSS	with	SHA-256	as	the	underlying	hash	algorithm.		A	public	exponent	of	3	or	65,537	is	supported	

for	RSASSA-PKCS#1	v1.5,	while	only	public	exponent	65,537	is	supported	for	RSASSA-PSS.		Standard	ECDSA	over	P-384	with	

SHA-384	as	the	underlying	hash	algorithm	is	also	supported	on	a	limited	number	of	chipsets.

Certifi	cate	Signatures
The	certifi	cate	signatures	are	all	fully	X.509	compliant.		The	certifi	cate	chain	can	be	created,	parsed,	and	verifi	ed	by	an	open	

source	X.509	compliant	tool	(such	as	OpenSSL).		The	detailed	specifi	cation	for	both	the	RSASSA-PKCS#1	v1.5	and	RSASSA-PSS	

signature	schemes	can	be	found	in	“PKCS #1 v2.1: RSA Cryptography Standard”,	published	by	RSA	Laboratories.

Image	Hash	Segment	Signature
RSASSA-PKCS#1 v1.5

After	the	certifi	cate	chain	has	been	verifi	ed,	the	signature	on	the	software	image’s	hash	segment	is	then	verifi	ed.		(The	hash	

segment	signature	is	the	blue	“Signature”	appended	to	the	green	“Source”	box	shown	in	Figure	3.)		The	attestation	certifi	cate	

indicates	which	signature	algorithm	is	used	to	verify	the	image	signature.		The	standard	RSASSA-PKCS#1	v1.5	signature	scheme	

message-encoding	(sometimes	simply	referred	to	as	“padding”)	is	shown	in	Figure	5.		The	“Hash”	bubble	there	refers	to	a	standard	

SHA-256	or	SHA-1	hash	function,	and	“T”	includes	ASN.1	DigestInfo	concatenated	with	the	result	of	“Hash”.

M HASH

H
(hLen)

Hash Algorithm ID (DER)
(0x30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20)

HT =

T00PS
0x(FF) 8+ Octets0100EM =

Figure	5:	RSASSA-PKCS1	v1.5	Standard	Encoding3

13

Qualcomm	Technologies	hash	segment	signatures	of	type	RSASSA-PKCS#1	v1.5	vary	slightly	from	the	standard	in	the	message	

encoding, and in the hash construction. The hash computation and encoded message padding are shown pictographically in

Figure	6.		The	values	“ipad”	and	“opad”	are	taken	from	the	HMAC	specifi	cation.

H0

HASH

HM00PS
0x(FF) 8+ Octets0100EM =

SW_ID ipad

H1HW_ID opad

HASH

M

HASH

H

Figure	6:	Qualcomm	Technologies	RSASSA-PKCS1	v1.5	Image	Signature	Encoding

Our	hash	segment	signature	excludes	the	DigestInfo	from	the	encoded	message	(EM),	and	uses	an	HMAC-like	hash	keyed	with	

SW_ID,	HW_ID	rather	than	a	single	key	“K”.		This	is	designed	to	provide	a	strong	binding	of	the	two	most	important	identifi	ers	

(SW_ID	and	HW_ID)	to	the	image	hash	(HM)	used	in	signing,	rather	than	being	relegated	to	software	checks.		The	hash	algorithm	

ID from Figure 5 is not needed here since OU 07 is used to specify the hash algorithm.

RSASSA-PSS

The	hash	segment	signature	format	for	PSS	is	standards-compliant,	as	are	the	certifi	cate	signatures.		Only	SHA-256	is	supported	

for	“Hash”	and	“MGF”	in	the	PSS	signature	scheme.		For	reference,	the	message-encoding	scheme	for	PSS	is	given	in	Figure	7.

14

4From	PKCS	#1	v2.1:	RSA	Cryptography	Standard

Figure	7:	RSASSA-PSS	Encoding4

6 Summary

Software images are loaded from untrusted storage to internal trusted memory and parsed. The loading and parsing phase

includes	address	and	size	validation	against	whitelisted	address	ranges	and	integer	overfl	ow	checks	when	calculating	off	sets	and	

end addresses. First the image’s ELF and Program headers are loaded and parsed, then the hash segment is loaded and parsed.

The	hash	segment	is	signed	with	a	two	or	three	certifi	cate	chain.		Each	certifi	cate’s	signature	is	verifi	ed	with	the	public	key	

authorized	by	the	certifi	cate	above	it.		The	Attestation	certifi	cate	is	verifi	ed	by	the	Attestation	CA	certifi	cate	in	the	three-certifi	cate	

chain	(but	is	verifi	ed	by	the	Root	CA	certifi	cate	in	the	two-certifi	cate	chain).	If	present,	the	Attestation	CA	certifi	cate	is	verifi	ed	by	

the	Root	CA	certifi	cate.		The	Root	CA	certifi	cate	is	validated	by	comparing	its	hash	to	the	OEM-provisioned	value	in	eFuse	or	in	

ROM.		The	software	image’s	hash	segment	signature	is	verifi	ed	by	the	public	key	authorized	by	the	Attestation	certifi	cate.		This	

hash	segment	signature	verifi	cation	includes	enforcement	of	bindings	between	Qualcomm	Technologies	OU	fi	elds	present	in	the	

Attestation	certifi	cate	and	the	corresponding	values	on-device.		A	new	Attestation	certifi	cate	is	generated	each	time	an	image	is	

signed,	making	them	unique	per	software	image	and	instance.

15

The	certifi	cate	chain	signature	algorithms	support	standard	RSASSA-PKCS#1	v1.5	with	SHA-1	or	SHA-256	and	RSASSA-PSS	with	

SHA-256.		The	image	hash	segment	signature	supports	a	standard-variant	RSA	PKCS#1	v1.5	with	SHA-1	or	SHA-256	and	standard	

RSASSA-PSS	with	SHA-256.		ECDSA	over	P-384	with	SHA-384	is	supported	for	both	certifi	cate	chain	signatures	and	image	hash	

segment signatures on a limited number of chipsets.

After	the	certifi	cate	chain	and	image	signatures	have	been	verifi	ed,	each	NON-PAGED	LOAD	segment	in	the	ELF	image	is	hashed	

and	compared	against	its	hash	segment	entry.		If	the	comparison	fails,	or	an	entry	does	not	exist	for	that	segment,	then	the	

verifi	cation	sequence	fails.		Otherwise,	all	loaded	segments	of	the	software	image	have	passed	verifi	cation,	leading	back	through	

the chain of trust to the root of trust.

Execution	is	now	transferred	to	the	entry	point	of	the	image	that	has	just	been	successfully	verifi	ed.		When	the	next	software	

image	is	to	be	loaded,	authenticated,	and	executed,	the	same	process	is	repeated.

Figure 8: The Chain of Trust

Root CA Hash
[eFuse/ROM]

Root CA Cert. Attestation CA
 Cert.

Attestation
Cert.

Hash Segment
& Headers

LOAD
Segments

16

