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4	 Certificates Chain and Format

2In a two-certificate chain, the Attestation certificate appears first and is signed directly by a self-signed Root certificate that follows.

When headers or segments are loaded from external storage, their destination address and size in memory is verified to be fully 

contained in a whitelist to confirm that they are strictly confined to the memory space allotted for them.  This is designed to 

prevent data from being written to unauthorized memory addresses, addresses where other data already resides, or from spilling 

over into another region.  When calculating these offsets and sizes, the arithmetic is checked to ensure the result does not 

overflow (i.e. wrap around past zero).  These checks are also performed on the other headers, the certificates, and other items 

where offsets and sizes are calculated. 

The certificate chain can consist of two or three certificates, all following the ITU-T X.509 v3 format.  The certificate chain 

includes an Attestation certificate, (optionally) an Attestation CA certificate2, and a Root CA certificate.  Each is signed by the next 

certificate in the chain, as shown in Figure 3.  The SHA-256 hash digest of the Root CA certificate must match the value stored in 

eFuse or stored in ROM in order to anchor the chain of trust.  

A two-certificate chain is designed to reduce the on-device verification time and certificate chain size of each image by one 

certificate.  In exchange, the server-side signer has less flexibility in authorizing entities to generate Attestation certificates (the job 

of the Attestation CA).  This server-side signer also loses the ability to revoke that authorization since the Root CA directly signs 

Attestation certificates in this model and is anchored to eFuses on-device.  

Figure 3: Certificate Chain Structure

The Root CA and Attestation CA certificates are typical X.509 certificates containing the same fields as those you might find 

securing a web browsing session.  The Attestation certificate however, will include additional details in its Org Unit (OU) fields.  All 

certificates are fully conformant to X.509.  Profiles 1-3 below display certificate fields taken from the certificate chain of a signed 

Qualcomm® Snapdragon™ 820 processor eXtensible BootLoader (XBL) image.
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Profi	le	1:	Root	Certifi	cate	Profi	le
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Profi	le	2:	Attestation	CA	Certifi	cate	Profi	le

The	calculated	SHA-256	digest	of	the	Root	CA	certifi	cate	seen	in	Profi	le	1	would	need	to	match	the	value	in	the	device’s	eFuse	or	

ROM	in	order	for	this	Root	CA	certifi	cate	to	be	valid	on	that	device.		

The	Basic	Constraints	indicate	that	this	certifi	cate	can	sign	other	certifi	cates	(CA=TRUE).		We	see	that	the	Attestation	CA	certifi	cate	

can	also	sign	certifi	cates,	but	only	a	leaf	certifi	cate	like	the	Attestation	certifi	cate	(CA=TRUE, pathLen=0).		Both	certifi	cates’	Key	

Usage	indicate	they	are	authorized	for	certifi	cate	signatures.		The	Subject	Key	Identifi	er	and	Authority	Key	Identifi	er	fi	elds	indicate	

that	the	Root	CA	is	the	authority	for	the	Attestation	CA	(and	the	Attestation	CA	is	the	authority	for	the	Attestation	certifi	cate	

below).		These	two	fi	elds	are	included	mostly	for	tracking	rather	than	for	security	purposes.
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Profi	le	3:	Attestation	Certifi	cate	Profi	le

The	Basic	Constraints	of	the	Attestation	certifi	cate	indicate	that	this	certifi	cate	cannot	sign	other	certifi	cates	(CA=FALSE)	but	that	

Key	Usage	indicates	it	is	authorized	for	digital	signatures	(signing	the	software	image).		While	the	same	Root	CA	and	Attestation	

CA	may	be	used	for	multiple	images	on	multiple	devices,	a	new	Attestation	certifi	cate	is	generated	for	each	signed	image	instance.			

The	Attestation	certifi	cate	contains	OU	fi	elds	which	may	provide	information	or	restrictions	on	that	signed	image	instance.		The	

values	found	in	OU	fi	elds	may	then	be	validated	against	those	read	from	eFuse	or	explicitly	expected	by	the	verifying	software.		We	

discuss	the	common	OU	fi	elds	below.
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Qualcomm Technologies OU Fields

The OU fields are designed to cryptographically bind various attributes to the signature and to provide information about the 

image and/or signature. 

01 SW_ID
The software ID binds the signature to a particular version of a particular software image.  This 64-bit value is a concatenation of 

those two values: 

01	 SW_ID		  VERSION (32-bit) || IMAGE_ID (32-bit)

The value “0x0000000000000000” indicates version 0 of IMAGE_ID 0 (XBL).  If eFuse values indicated that the current version was 

“1”, then this image would fail verification.  Version enforcement is done in order to prevent loading an older, perhaps vulnerable, 

version of the image that has a valid signature attached.  The IMAGE_ID check is enforced to confirm that we are loading and 

verifying the software image that is expected to execute next – in this case, XBL Version 0.

02 HW_ID
The hardware ID binds the signature to a particular device family, model, and OEM.  In the example shown, the HW_ID is 

constructed as follows: 

02	 HW_ID		  MSM_ID (32-bit) || OEM_ID (16-bit) || MODEL_ID (16-bit)

The value “0x009470E12A703DB9” indicates that this image was signed for a device with MSM_ID 0x009470E1, OEM_ID 0x2A70, and 

MODEL_ID 0x3DB9.  The MSM_ID is a unique identifier chosen by Qualcomm Technologies to designate a specific chip-type within 

a given chip-family.  The fields contained in HW_ID must match those provisioned in eFuse for the signature to be valid.  Therefore 

this signature would be invalid on any other chip model or chip-type.  It would also be invalid on a matching device model and 

chip-type with a differing OEM_ID value in eFuse; a legitimate signature created by OEM “A” will not be valid on any other OEM’s 

device – even for the exact same software image version and type on a device using the exact same model and chip-type.

03 DEBUG
The Debug OU field indicates whether debug capability should be disabled or not.  In the certificate above, the debug value is set 

to DISABLED (“0x0000000000000002”).

04 OEM_ID
OU 04 is an easy-to-read copy of the OEM_ID from the HW_ID field, and is for information only.  The value of OEM_ID is enforced in 

the HW_ID validation described above.

05 SW_SIZE
This OU field indicates the size of the data being signed (not the size of the software image).  From Figure 2 we see this includes 

the Hash Table Header (40-bytes) and the Hash Table Entries (32-bytes per entry).  The value of 0x248 indicates that there are 17 

segments in this image.  This OU field is for information only.

06 MODEL_ID
OU 06 is an easy-to-read copy of the MODEL_ID from the HW_ID field, and is for information only.  The value of MODEL_ID is 

enforced in the HW_ID validation described above.
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 3Drawn	from	text	specifi	cation	in	PKCS	#1	v2.1:	RSA	Cryptography	Standard

07 SHA256 / SHA1
This	OU	fi	eld	indicates	which	hash	algorithm	is	used	to	calculate	the	hash	during	signature	verifi	cation.		SHA-256	and	SHA-1	are	

the	current	options.		The	example	specifi	es	SHA-256	(“0001”)	as	the	hash	algorithm.

5 Signatures

Signature	Algorithms
The	RSASSA-PKCS#1	v1.5	signature	scheme	is	supported	with	SHA-256	or	SHA-1	as	the	underlying	hash	algorithm.		Newer	

chipsets	also	support	RSASSA-PSS	with	SHA-256	as	the	underlying	hash	algorithm.		A	public	exponent	of	3	or	65,537	is	supported	

for	RSASSA-PKCS#1	v1.5,	while	only	public	exponent	65,537	is	supported	for	RSASSA-PSS.		Standard	ECDSA	over	P-384	with	

SHA-384	as	the	underlying	hash	algorithm	is	also	supported	on	a	limited	number	of	chipsets.

Certifi	cate	Signatures
The	certifi	cate	signatures	are	all	fully	X.509	compliant.		The	certifi	cate	chain	can	be	created,	parsed,	and	verifi	ed	by	an	open	

source	X.509	compliant	tool	(such	as	OpenSSL).		The	detailed	specifi	cation	for	both	the	RSASSA-PKCS#1	v1.5	and	RSASSA-PSS	

signature	schemes	can	be	found	in	“PKCS #1 v2.1: RSA Cryptography Standard”,	published	by	RSA	Laboratories.

Image	Hash	Segment	Signature
RSASSA-PKCS#1 v1.5

After	the	certifi	cate	chain	has	been	verifi	ed,	the	signature	on	the	software	image’s	hash	segment	is	then	verifi	ed.		(The	hash	

segment	signature	is	the	blue	“Signature”	appended	to	the	green	“Source”	box	shown	in	Figure	3.)		The	attestation	certifi	cate	

indicates	which	signature	algorithm	is	used	to	verify	the	image	signature.		The	standard	RSASSA-PKCS#1	v1.5	signature	scheme	

message-encoding	(sometimes	simply	referred	to	as	“padding”)	is	shown	in	Figure	5.		The	“Hash”	bubble	there	refers	to	a	standard	

SHA-256	or	SHA-1	hash	function,	and	“T”	includes	ASN.1	DigestInfo	concatenated	with	the	result	of	“Hash”.

M HASH

H
(hLen)

Hash Algorithm ID (DER)
(0x30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20)

HT =

T00PS
0x(FF) 8+ Octets0100EM =

Figure	5:	RSASSA-PKCS1	v1.5	Standard	Encoding3
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Qualcomm	Technologies	hash	segment	signatures	of	type	RSASSA-PKCS#1	v1.5	vary	slightly	from	the	standard	in	the	message	

encoding, and in the hash construction.  The hash computation and encoded message padding are shown pictographically in 

Figure	6.		The	values	“ipad”	and	“opad”	are	taken	from	the	HMAC	specifi	cation.

H0

HASH

HM00PS
0x(FF) 8+ Octets0100EM =

SW_ID    ipad 

H1HW_ID    opad 

HASH

M

HASH

H

Figure	6:	Qualcomm	Technologies	RSASSA-PKCS1	v1.5	Image	Signature	Encoding

Our	hash	segment	signature	excludes	the	DigestInfo	from	the	encoded	message	(EM),	and	uses	an	HMAC-like	hash	keyed	with	

SW_ID,	HW_ID	rather	than	a	single	key	“K”.		This	is	designed	to	provide	a	strong	binding	of	the	two	most	important	identifi	ers	

(SW_ID	and	HW_ID)	to	the	image	hash	(HM)	used	in	signing,	rather	than	being	relegated	to	software	checks.		The	hash	algorithm	

ID from Figure 5 is not needed here since OU 07 is used to specify the hash algorithm.

RSASSA-PSS

The	hash	segment	signature	format	for	PSS	is	standards-compliant,	as	are	the	certifi	cate	signatures.		Only	SHA-256	is	supported	

for	“Hash”	and	“MGF”	in	the	PSS	signature	scheme.		For	reference,	the	message-encoding	scheme	for	PSS	is	given	in	Figure	7.
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4From	PKCS	#1	v2.1:	RSA	Cryptography	Standard

Figure	7:	RSASSA-PSS	Encoding4 

6 Summary

Software images are loaded from untrusted storage to internal trusted memory and parsed.  The loading and parsing phase 

includes	address	and	size	validation	against	whitelisted	address	ranges	and	integer	overfl	ow	checks	when	calculating	off	sets	and	

end addresses.  First the image’s ELF and Program headers are loaded and parsed, then the hash segment is loaded and parsed.

The	hash	segment	is	signed	with	a	two	or	three	certifi	cate	chain.		Each	certifi	cate’s	signature	is	verifi	ed	with	the	public	key	

authorized	by	the	certifi	cate	above	it.		The	Attestation	certifi	cate	is	verifi	ed	by	the	Attestation	CA	certifi	cate	in	the	three-certifi	cate	

chain	(but	is	verifi	ed	by	the	Root	CA	certifi	cate	in	the	two-certifi	cate	chain).	If	present,	the	Attestation	CA	certifi	cate	is	verifi	ed	by	

the	Root	CA	certifi	cate.		The	Root	CA	certifi	cate	is	validated	by	comparing	its	hash	to	the	OEM-provisioned	value	in	eFuse	or	in	

ROM.		The	software	image’s	hash	segment	signature	is	verifi	ed	by	the	public	key	authorized	by	the	Attestation	certifi	cate.		This	

hash	segment	signature	verifi	cation	includes	enforcement	of	bindings	between	Qualcomm	Technologies	OU	fi	elds	present	in	the	

Attestation	certifi	cate	and	the	corresponding	values	on-device.		A	new	Attestation	certifi	cate	is	generated	each	time	an	image	is	

signed,	making	them	unique	per	software	image	and	instance.
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The	certifi	cate	chain	signature	algorithms	support	standard	RSASSA-PKCS#1	v1.5	with	SHA-1	or	SHA-256	and	RSASSA-PSS	with	

SHA-256.		The	image	hash	segment	signature	supports	a	standard-variant	RSA	PKCS#1	v1.5	with	SHA-1	or	SHA-256	and	standard	

RSASSA-PSS	with	SHA-256.		ECDSA	over	P-384	with	SHA-384	is	supported	for	both	certifi	cate	chain	signatures	and	image	hash	

segment signatures on a limited number of chipsets.

After	the	certifi	cate	chain	and	image	signatures	have	been	verifi	ed,	each	NON-PAGED	LOAD	segment	in	the	ELF	image	is	hashed	

and	compared	against	its	hash	segment	entry.		If	the	comparison	fails,	or	an	entry	does	not	exist	for	that	segment,	then	the	

verifi	cation	sequence	fails.		Otherwise,	all	loaded	segments	of	the	software	image	have	passed	verifi	cation,	leading	back	through	

the chain of trust to the root of trust.

Execution	is	now	transferred	to	the	entry	point	of	the	image	that	has	just	been	successfully	verifi	ed.		When	the	next	software	

image	is	to	be	loaded,	authenticated,	and	executed,	the	same	process	is	repeated.

Figure 8: The Chain of Trust
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