Image representations for large-scale visual recognition

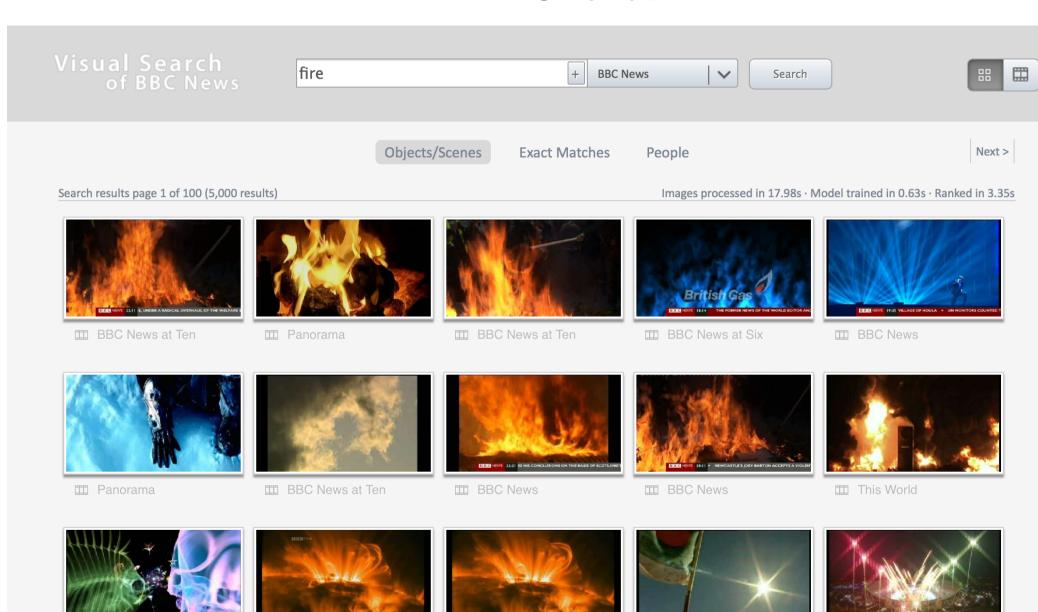
Andrea Vedaldi

Demo: image search

http://www.robots.ox.ac.uk/~vgg/research/on-the-fly/

Rob Cooper from BBC Research & Development explains how their work with Oxford University is opening up new ways to search archive footage.¹

Searching by type



Inside Out London

World News Today

BBC News at Six

BBC News at Six

BBC News

Searching by instance

Visual Search of BBC News

big ben

BBC News

Search

Objects/Scenes

Exact Matches

People

Next >

Search results page 1 of 34 (1,000 results)

BBC News at Six

Panorama

BBC News at Six

BBC News at Six

BBC News

BBC News at Ten

BBC London News

BBC News

BBC News at Ten

BBC News

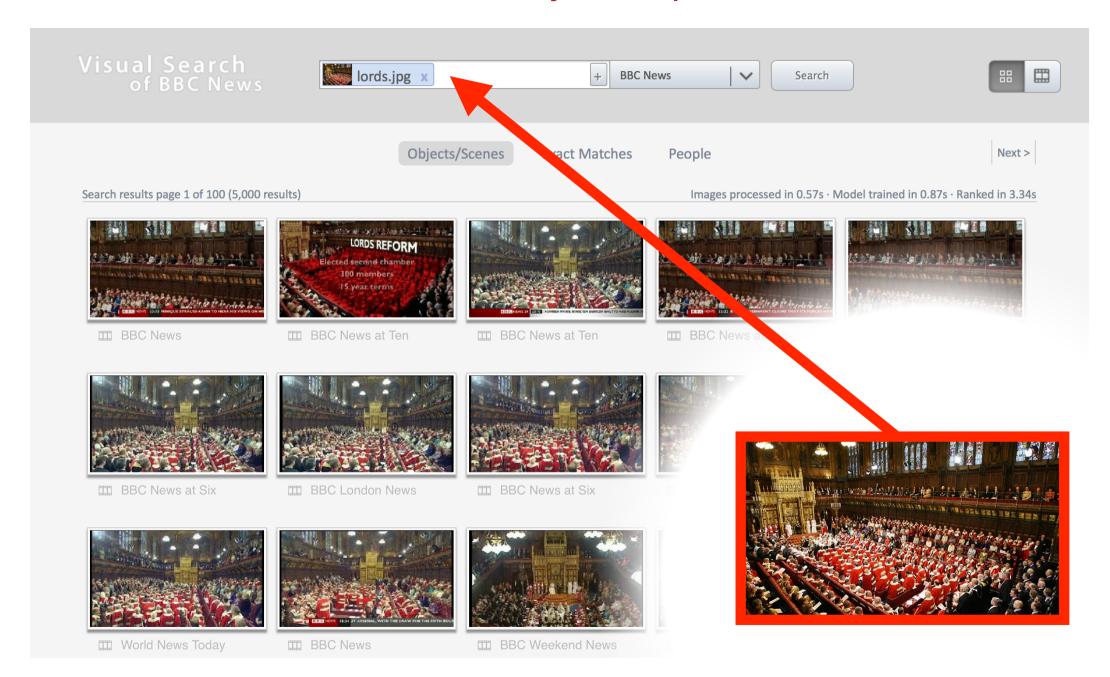
BBC News at Ten

BBC News

BBC News

BBC News at Six

Search by example



Searching by identity

Visual Search of BBC News

Hilary Clinton

BBC News

Search

Objects/Scenes

Exact Matches

People

Next >

Search results page 1 of 167 (5,000 results)

Images processed in 10.41s · Model trained in 7.39s · Ranked in 2.79s

Mewsnight

BBC News

World News Today

BBC News at Ten

BBC News at Ten

BBC News at Ten

World News Today

BBC News

BBC News at Ten

World News Today

BBC News

World News Today

BBC News

By the People: The...

The Record Europe

Challenges

BBC Footage Duration	# of Frames	# of Keyframes	Footprint	Faces Detected
3 - 40 K hours	10 - 150 M	3 - 35 M	1 - 10 TB	5 - 20 M

▶ Understand images

Queries are semantic, images are not

► Learn objects, people on the fly

Build models for new queries on the spot

Respond fast

Search millions of frames in a few seconds

Small footprint

Index millions of frames in RAM

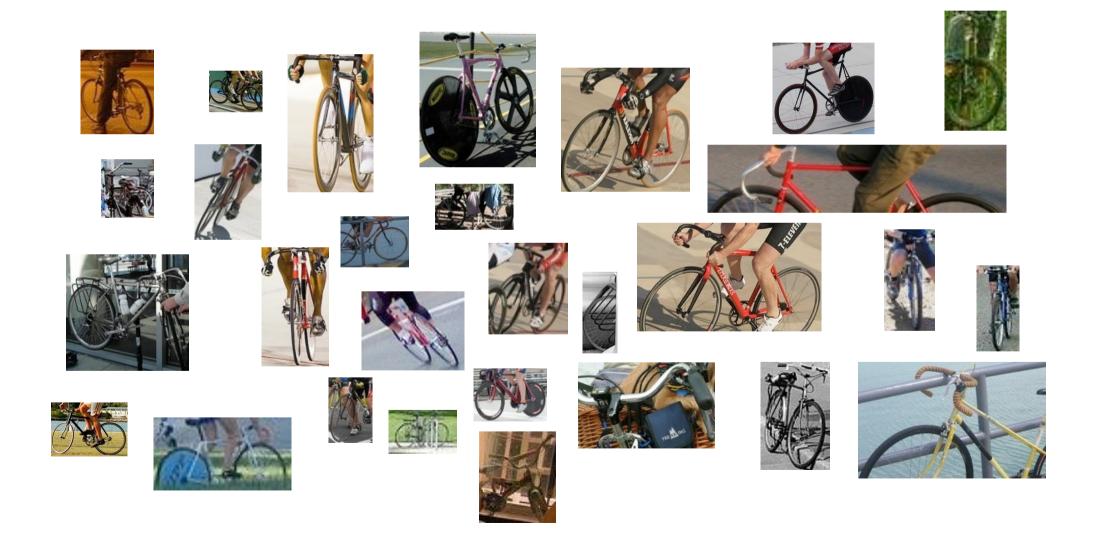
Understanding objects

Recognition by reconstruction [Vedaldi & Soatto 2005]

Is there a 3D scene that generates both images?

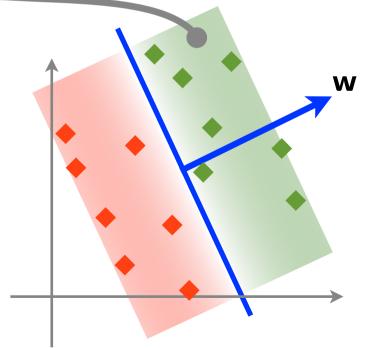
Image-based object models

object = **distribution** of **2D patterns**



Linear predictor

bicycle?

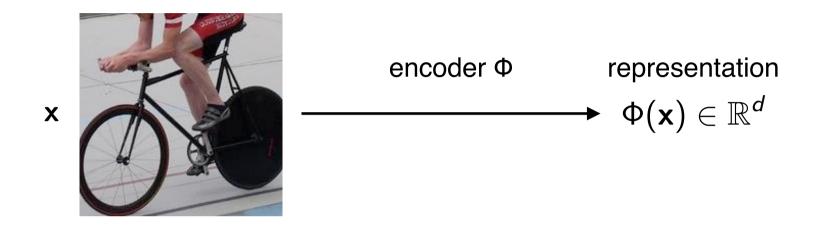


linear predictor

$$F(x) = \langle w, x \rangle$$

Encoder

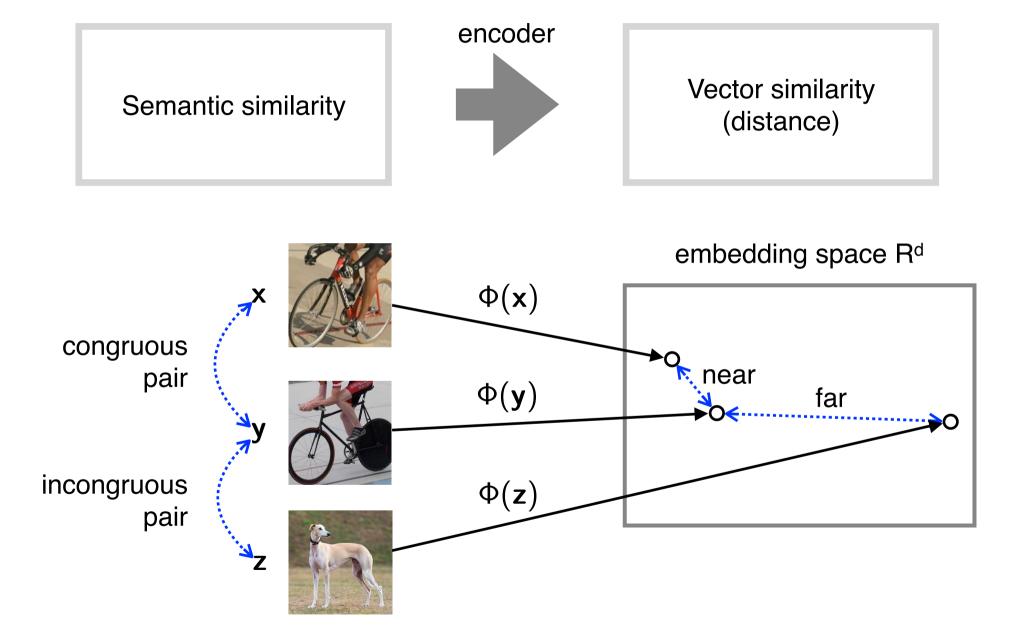
Using linear predictors on non-vectorial data



- ► An encoder maps the data into a vectorial representation
- ▶ Allows linear predictors to be applied to images, text, sound, videos, ...

$$F(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle$$

The goal of an encoder



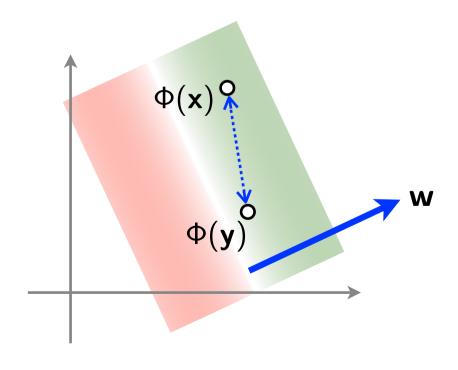
Learning predictors



Smoothness and generalisation

- ► Key challenge: extrapolate the training data
 - Achieved by smoothness
 - ▶ I.e. similar vectors receive similar scores

$$(F(\mathbf{x}) - F(\mathbf{y}))^2 = (\langle \mathbf{w}, \Phi(\mathbf{x}) - \Phi(\mathbf{y}) \rangle)^2 \le \|\mathbf{w}\| \cdot \|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\|$$



linear predictor

$$F(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle$$

Support vector machines

A representative predictor

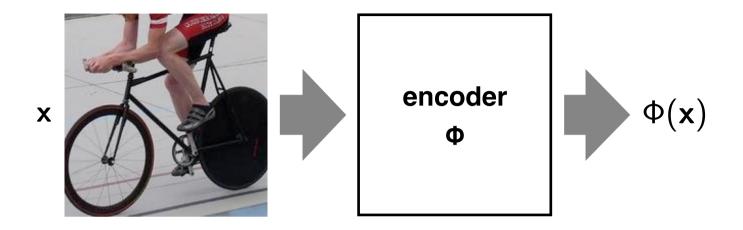
$$E(\mathbf{w}) = \lambda \frac{\|\mathbf{w}\|^2}{2} + \frac{1}{N} \sum_{i=1}^{N} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

The predictor ... is smooth ... and fits the training data

Optimisation

- Very large convex problem
- Key insight: an accurate solution is not required
- O(N) algorithms exist
 - Stochastic gradient descent, dual coordinate ascent, ...
 - Can learn on the fly on thousands or millions of examples

Good encoders



Main desiderata

- Powerful: meaningful similarity (accurate recognition)
- Cheap: fast to evaluate (can be computed on the fly)
- Compact: small code (takes little RAM, disk, IO)

Others

- Easy to learn (when applicable)
- Easy to implement

Contents

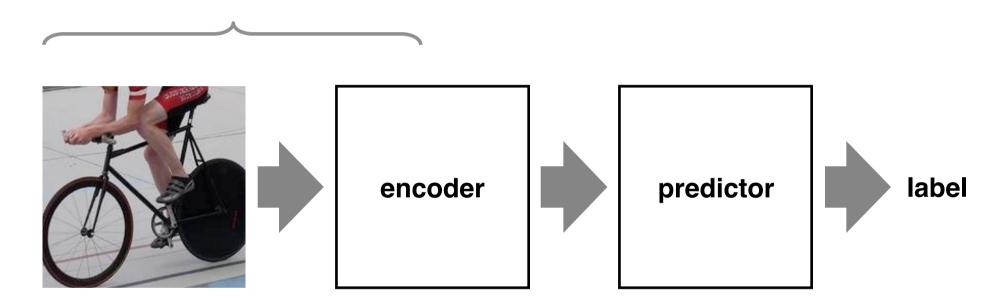
Part 1: feature engineering

Part 2: kernel embeddings

Part 3: learning embeddings

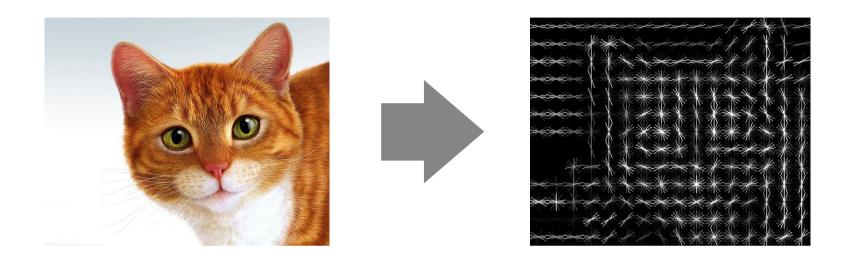
Part 4: embeddings from deep learning

Part 1: feature engineering

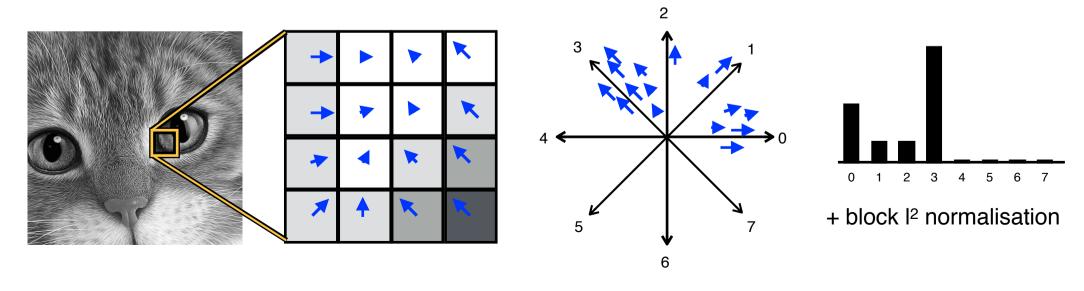


Histogram of oriented gradients

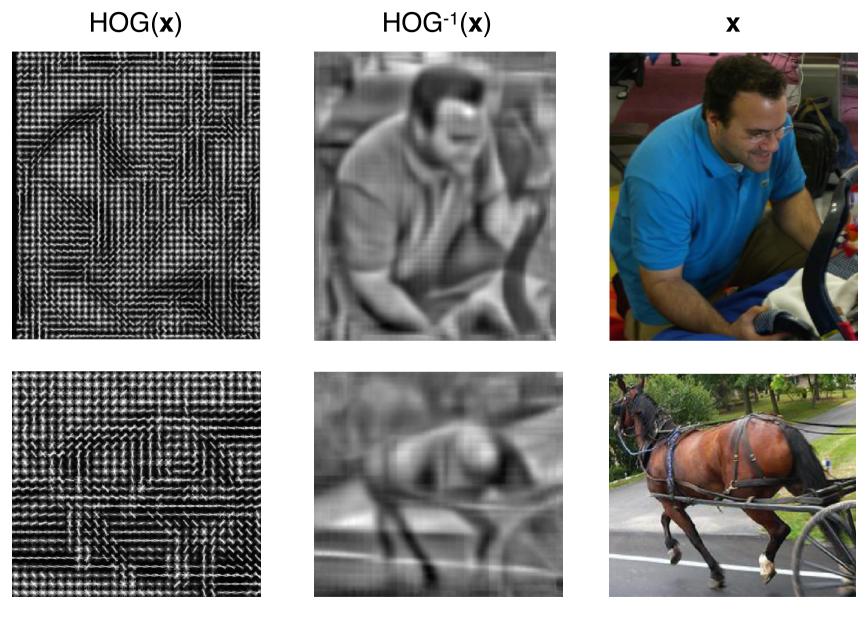
[Lowe 1999, Dalal & Triggs 2005]



Captures the local gradient (edge) orientations in the image



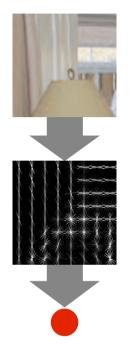
HOG examples

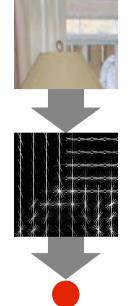


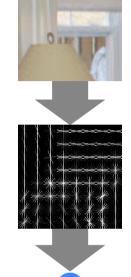
[Vondrick et al. 2013]

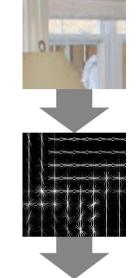
Bag of visual words

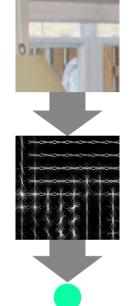
[Sivic & Zisserman 2003, Csurka et al. 2004, Nowak et al. 2006]





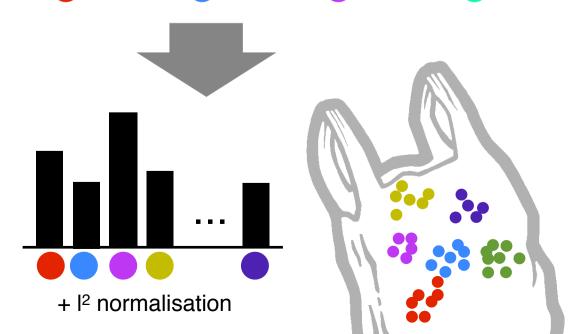




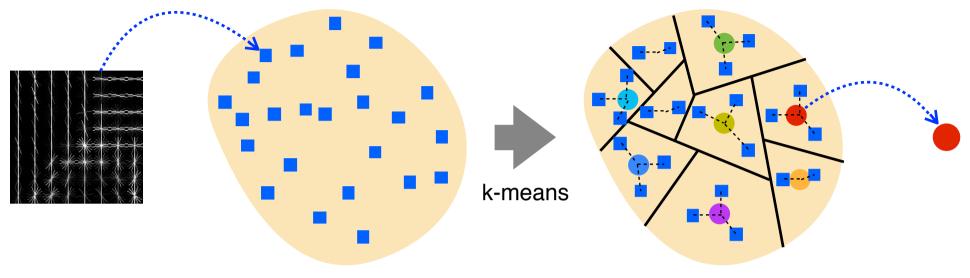


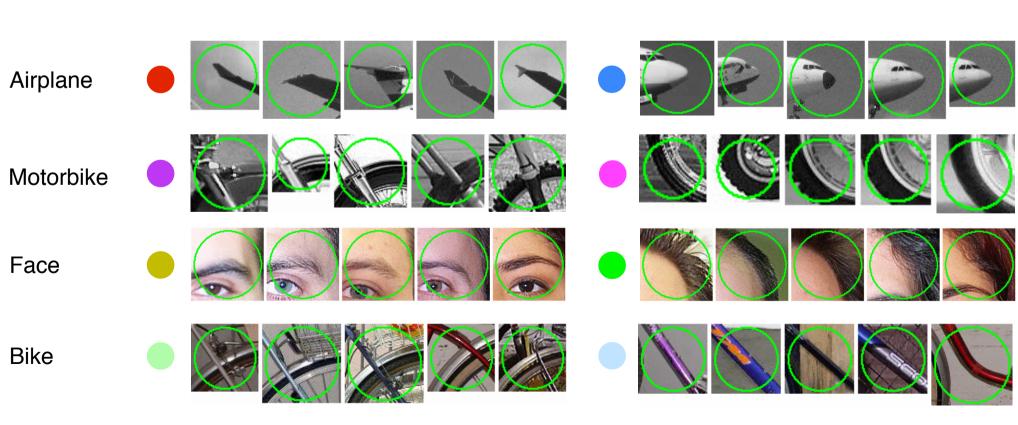
BoVW construction

- 1. Extract local descriptor densely
- 2. Quantise descriptors
- 3. Form histogram
- Discards spatial information



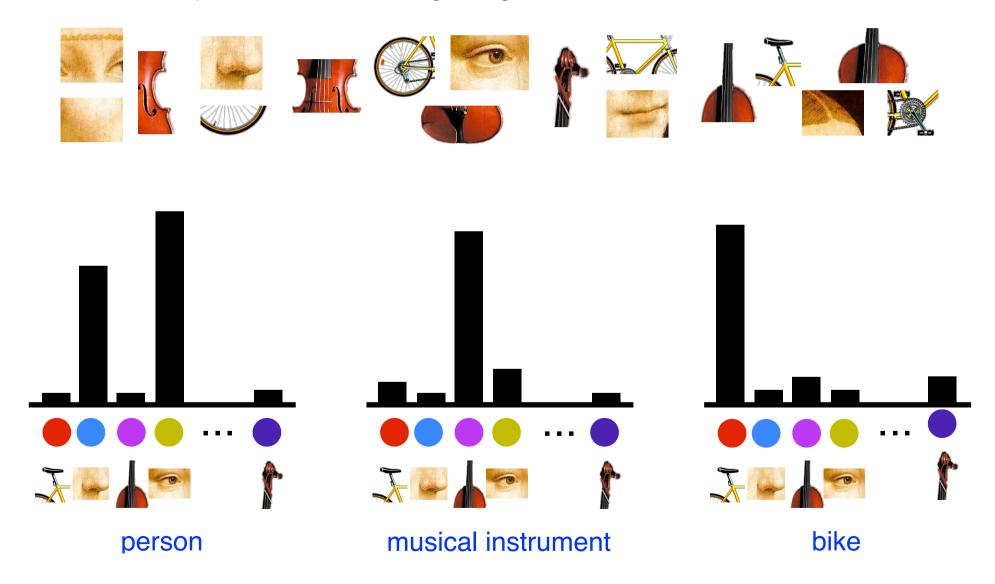
Quantisation





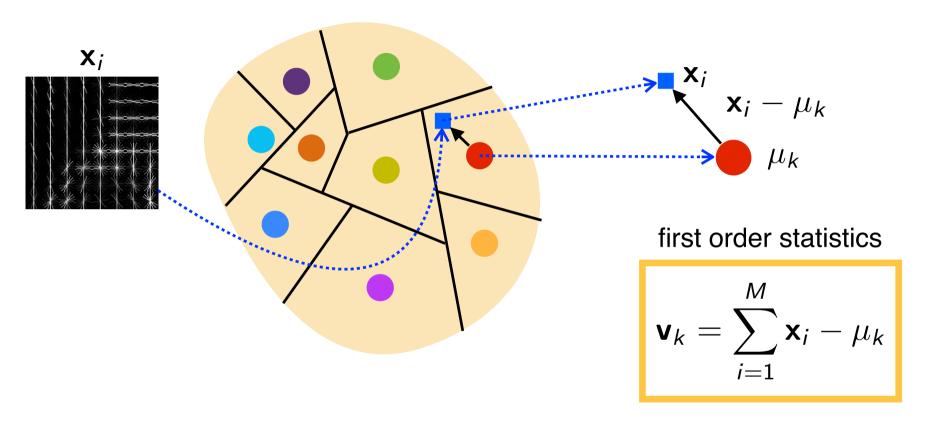
BoVW intuition

- Discarding spatial information gives lots of invariance
- Visual words represent "iconic" image fragments



Vector of locally aggregated descriptors (VLAD)

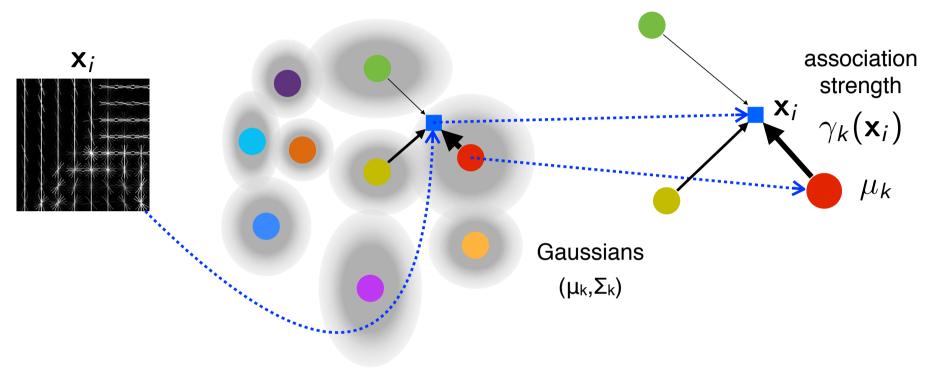
[Jegou et al. 2010]



VLAD encoding
$$\Phi = egin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_{\mathcal{K}} \end{bmatrix}$$
 + I² normalisation

Fisher Vector (FV)

[Perronnin et al. ECCV 201, Sharma Hussain Jurie ECCV 2012, Sanchez et al. 2103]



$$\begin{array}{c|c} \textbf{v}_1 \\ \textbf{u}_1 \\ \textbf{v}_2 \\ \textbf{+ sqrt-l}^2 \\ \text{normalisation} \end{array} \\ \begin{array}{c|c} \textbf{v}_1 \\ \textbf{v}_2 \\ \vdots \\ \textbf{v}_K \\ \textbf{u}_K \end{array}$$

first and second order statistics

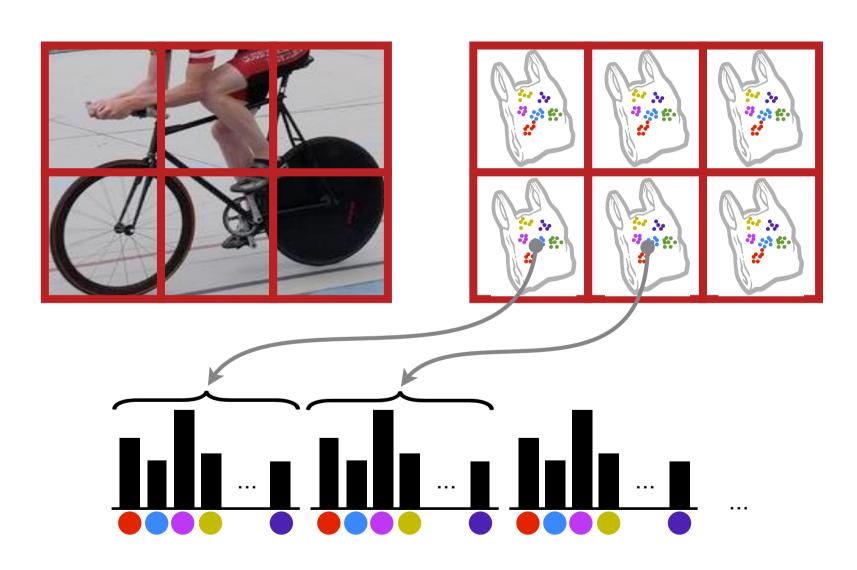
$$\mathbf{v}_{k} = \frac{1}{M\sqrt{\pi_{k}}} \sum_{i=1}^{M} \gamma_{k}(\mathbf{x}_{i}) \frac{\mathbf{x}_{i} - \mu_{k}}{\sigma_{i}}$$

$$\mathbf{u}_{k} = \frac{1}{M\sqrt{2\pi_{k}}} \sum_{i=1}^{M} \gamma_{k}(\mathbf{x}_{i}) \left(\frac{\mathbf{x}_{i} - \mu_{k}}{\sigma_{i}} - 1\right)^{2}$$

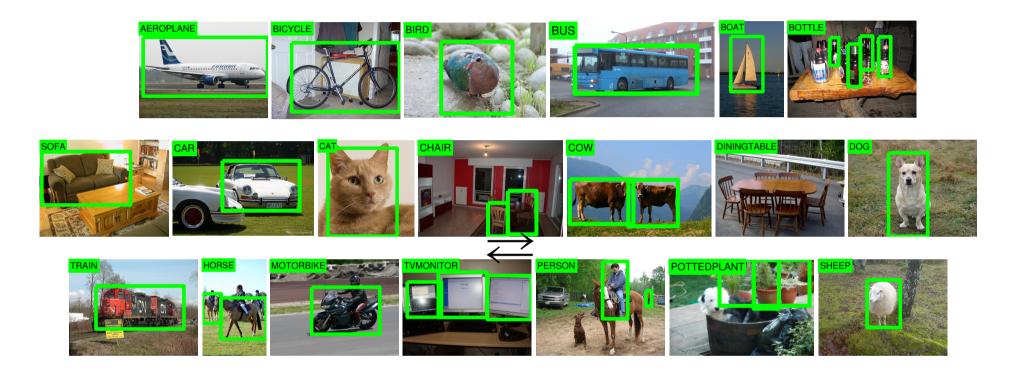
Spatial histograms

[Lazebnik et al. 2006]

Weak geometry: pool spatial information locally



Task: decide if an image contains any of twenty object classes



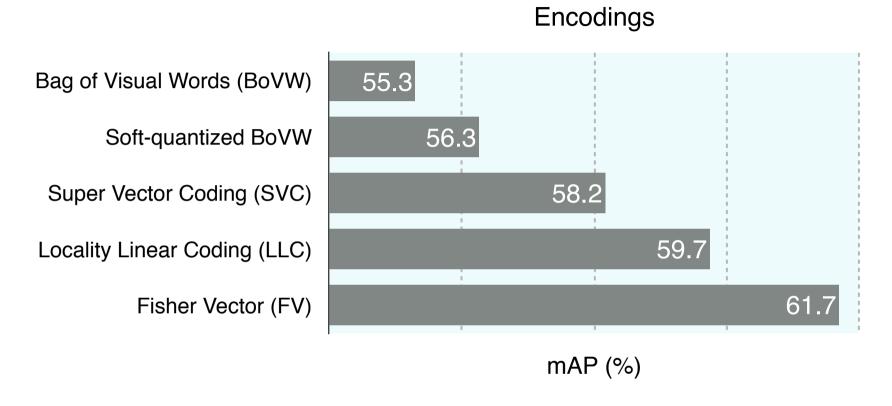
Performance mean Average Precision (mAP)

$$mAP = 50\%$$

50% of object occurrences are recognised reliably

The devil is in the details

A comparison of encodings [Chatfield et. al. 2011]



- ▶ 2005 2012: an industrial production of encodings
- Our evaluation compared them on an equal footing
- ▶ The (Improved) Fisher Vectors came out on top

Some fundamental ideas

Local and translation invariant operators

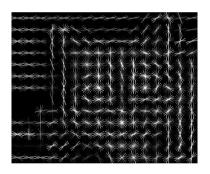
gradients, filters, visual words

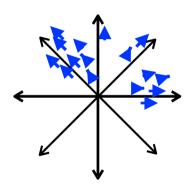
Experts

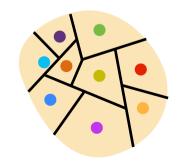
sparsity, quantisation

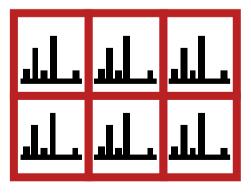
Pooling

max, sum, spatial pooling

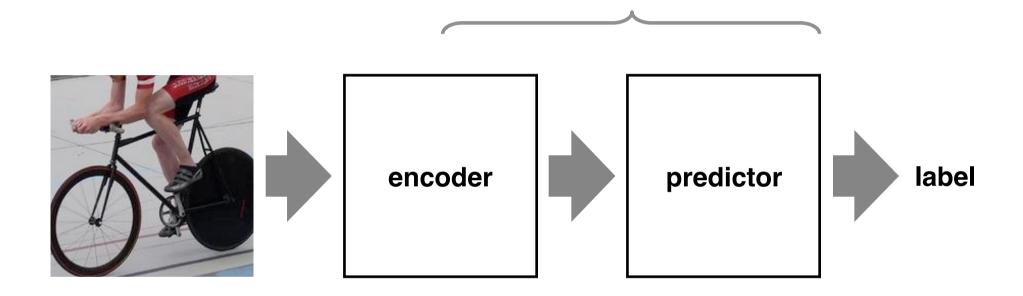






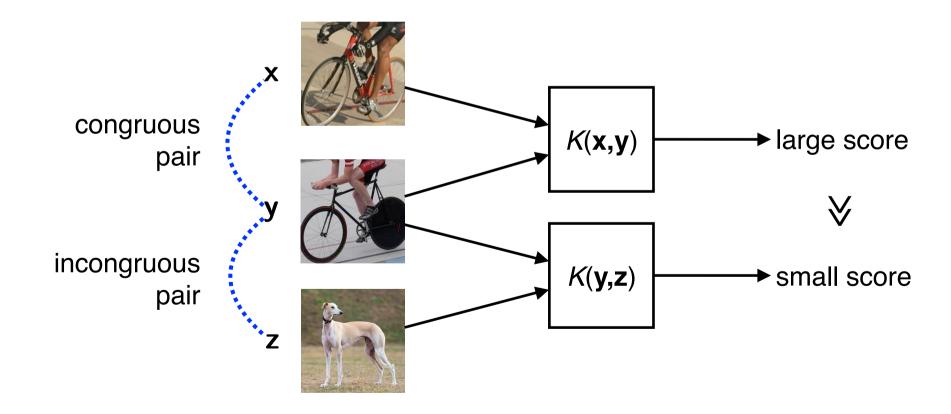


Part 2: kernel methods



$$\mathcal{K}: (\mathbf{x},\mathbf{y}) \mapsto \mathbb{R}$$

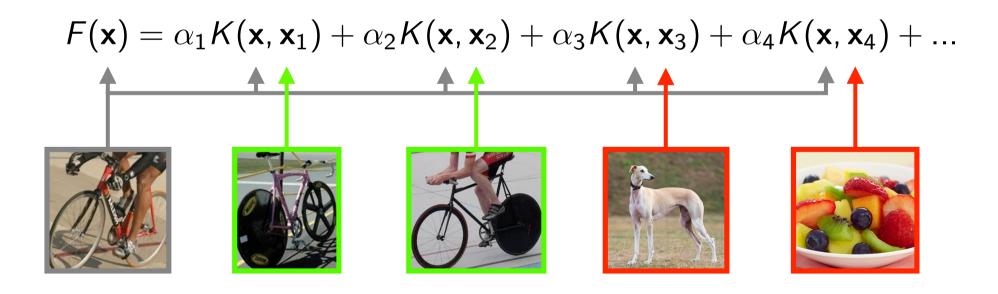
► A **kernel** *directly* encodes a notion of *data similarity*



Kernel predictor

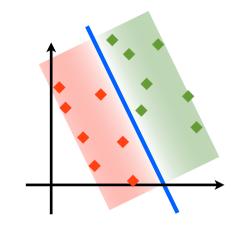
$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

- ► Task: predict the class of a datum x
- ▶ **How**: use K to compare \mathbf{x} it to all training examples \mathbf{x}_1 , \mathbf{x}_2 , ...



Linear SVM

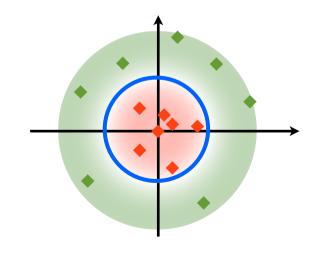
- ✓ fast
- × restrictive



$$F(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$$

Non-linear SVM

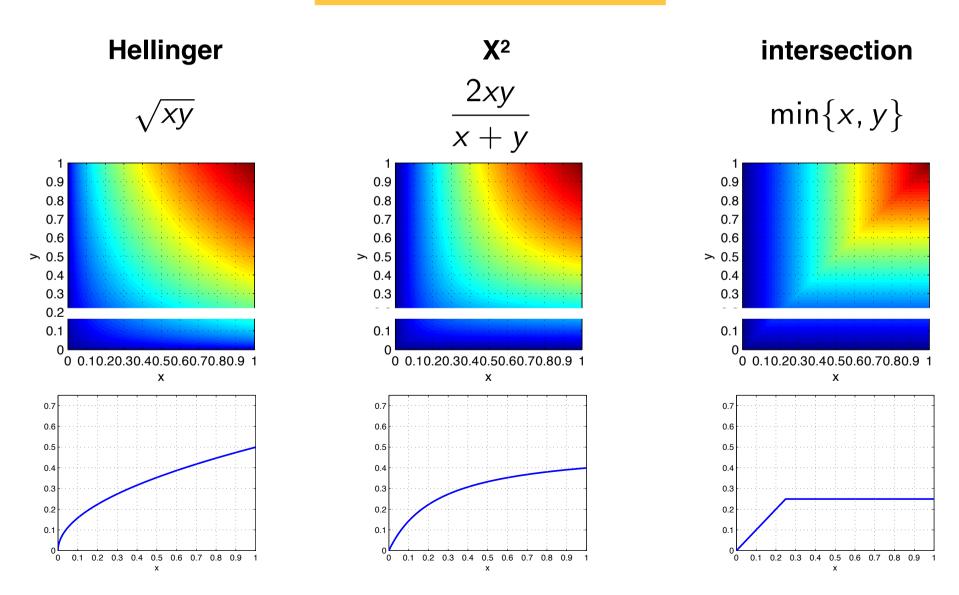
- **X** much slower
- ✓ powerful



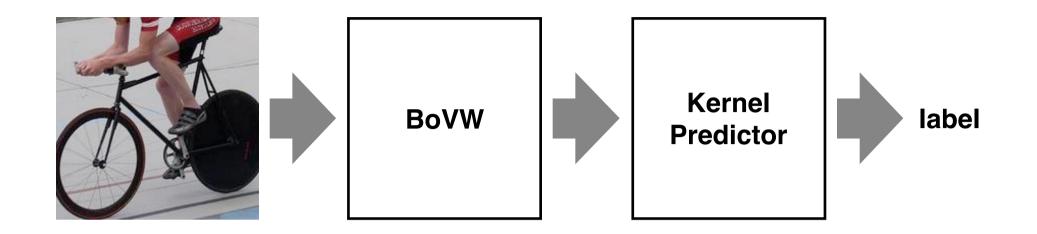
$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

Additive homogeneous kernels

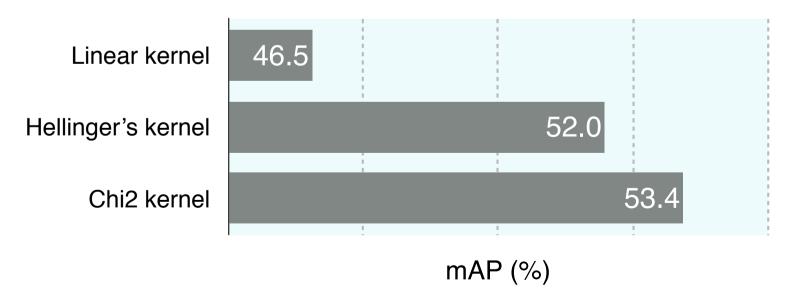
$$K(\mathbf{x},\mathbf{y}) = \sum_{l=1}^{d} k(x_l,y_l)$$



Additive kernels example



Bag of Visual Word on PASCAL VOC 07



Non-linear kernels are expensive

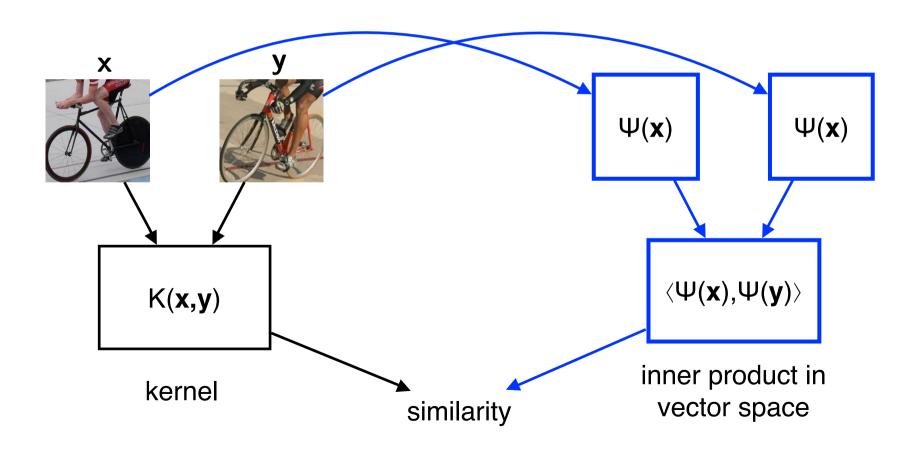
$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

thousand bicycles

many more non-bicycle

Kernel maps

► Positive definite kernel = inner product of **feature vectors**



Explicit kernel maps

Kernel maps

- often infinite dimensional
- used implicit (kernel trick)
- theoretical

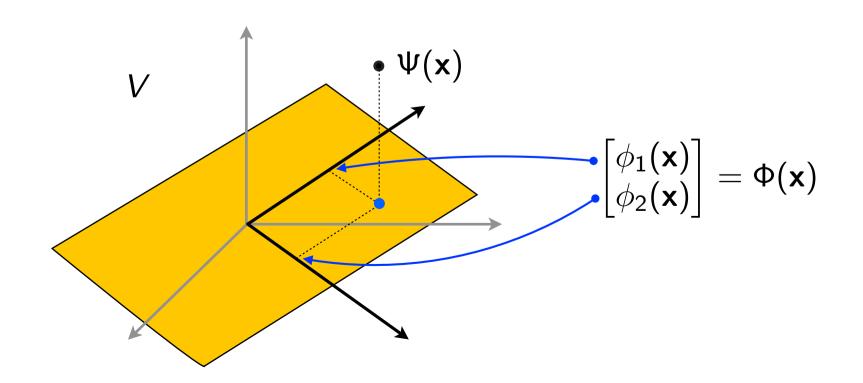
$$K(\mathbf{x}, \mathbf{y}) = \langle \Psi(\mathbf{x}), \Psi(\mathbf{y})
angle$$
 $\Psi(\mathbf{x}) \in V$

Explicit kernel maps

- ► finite dimensional <u>approximation</u>
- used explicitly
- practical

$$K(\mathbf{x}, \mathbf{y}) \approx \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$$

 $\Phi(\mathbf{x}) \in \mathbb{R}^d$



Explicit maps are efficient

a kernel predictor ...

... reduces to a linear predictor

$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$
 $K(\mathbf{x}, \mathbf{y}) \approx \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$
 $F(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle$
 $\mathbf{w} = \sum_{i=1}^{N} \alpha_i \Phi(\mathbf{x}_i)$

a **single vector** summarises the entire training set

The catch

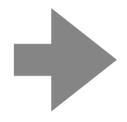
- Φ could be expensive to compute
- \blacktriangleright $\Phi(\mathbf{x})$ could be very high-dimensional

Much faster evaluation

$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

$$O(N)$$

explicit map



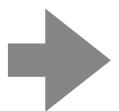
$$F(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle$$

O(1)

Much faster learning



explicit map



Linear SVM solver

LibLinear

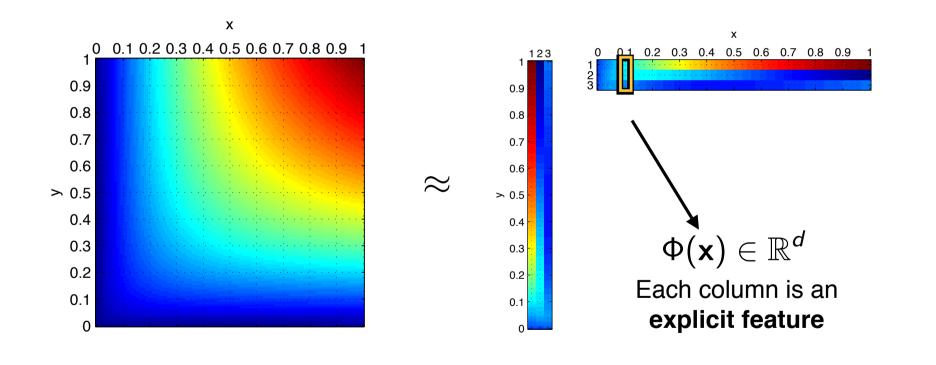
O(N)

Empirical explicit maps

► Empirical Nyström approximation

- ► Form empirical kernel matrix *K*
- Find square root $K = V^T V$ using eigenvectors
- ► Keep top *d* eigenvectors only

$$K(\mathbf{x}, \mathbf{y}) pprox \langle \Phi(\mathbf{x}), \Phi(\mathbf{y})
angle$$
 $K pprox \Phi^{ op} \Phi$



Analytical explicit maps

Empirical maps

- Numerical
- ► Good: general, adaptive
- Bad: slow, dataset specific
- A few kernels have trivial maps

- Closed-form
- Good: fast, dataset agnostic
- Bad: kernel-specific, non-adaptive

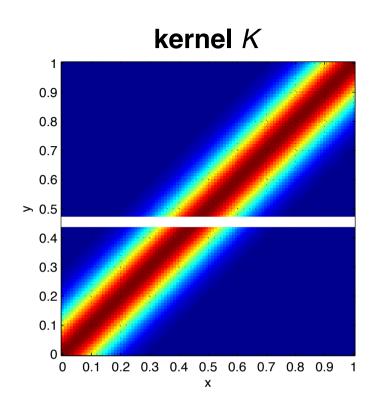
linear
$$K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$$

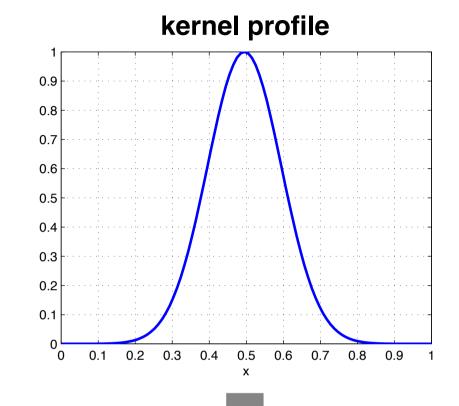
$$\Phi(\mathbf{x}) = \mathbf{x}$$

Hellinger's
$$K(x, y) = \sqrt{xy}$$

$$\Phi(x) = \sqrt{x}$$

Which other kernels have analytical maps?



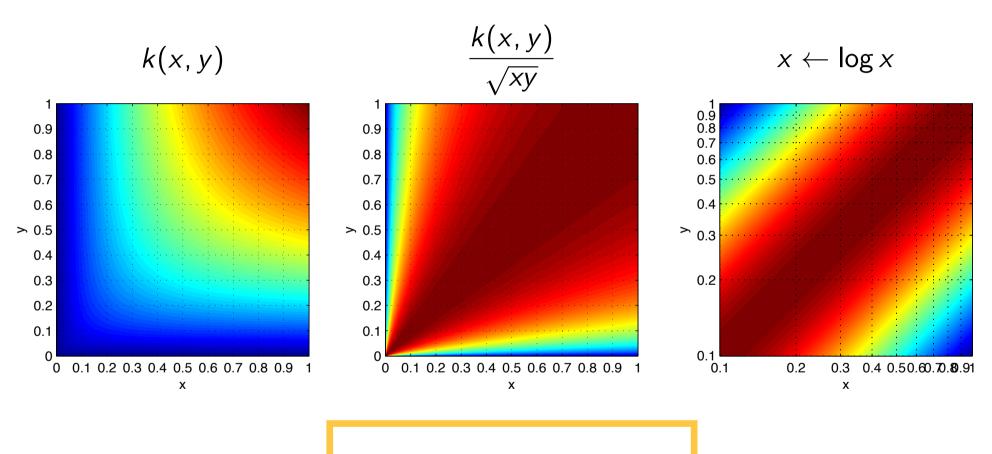


- Because of translation invariance
 - Profile = a kernel slice
 - ► Eigenvectors = sinusoids
 - ► Eigenvalues = Fourier transform of profile
- Feature map obtained from Fourier tf, often in closed-form

$$\Phi_{\omega}(\mathbf{x}) = \kappa_{\omega} e^{-\mathbf{i}\langle \omega, \mathbf{x} \rangle}$$

Homogeneous kernels

$$k(cx, cy) = ck(x, y)$$



$$\Phi_{\omega}(x) = \kappa_{\omega} \sqrt{x} \, e^{-\mathbf{i}\langle \omega, \log x \rangle}$$

[Vedaldi Zisserman 2010, 11]

Homogeneous kernel map: examples

linear	$K(x,y) = \langle x,y angle$	$\Phi(\mathbf{x}) = \mathbf{x}$
Hellinger's	$K(x,y) = \sqrt{xy}$	$\Phi(x) = \sqrt{x}$
Chi2	$K(x,y) = \frac{2xy}{x+y}$	$\Phi_{\omega}(x) = \sqrt{rac{2x}{\pi(1+4\omega^2)}}e^{-\mathbf{i}\omega\log x}$
Intersection	$K(x, y) = \min\{x, y\}$	$\Phi_{\omega}(x) = \sqrt{x \operatorname{sech}(\pi\omega)} e^{-\mathbf{i}\omega \log x}$

[Vedaldi Zisserman 2010, 11]

Example: Chi² map

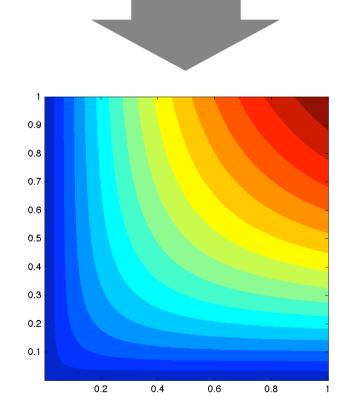
MATLAB code for Chi2 kernel

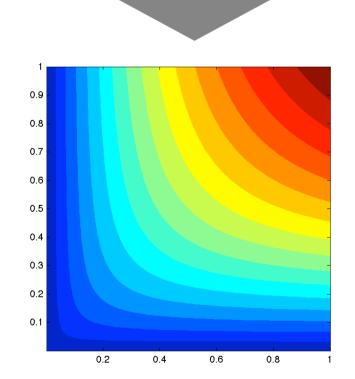
```
x = .01:.01:1 ;
for i = 1:100
   for j = 1:100
      K(i,j) = ...
      2*x(i)*x(j)/(x(i)+x(j));
   end
end
```

With the hom. kernel feature map

VLFeat Toolbox

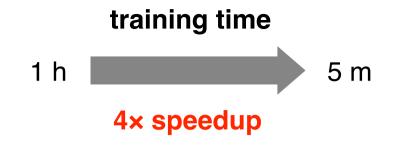
http://www.vlfeat.org





Caltech-101 category recognition

#1,500

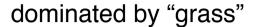


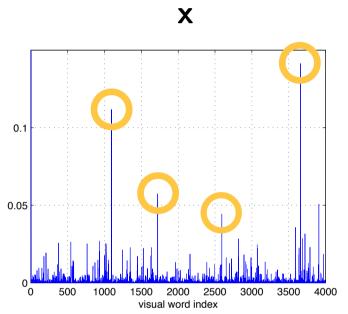
DaimlerChrylser pedestrian recognition

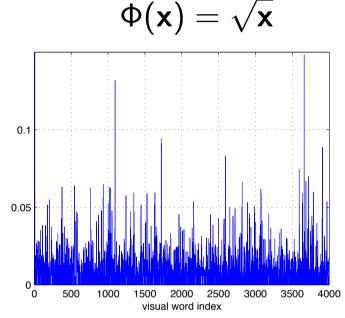
#20,000

Trecvid 2009 video indexing

#70,000







Burstiness

histograms are often dominated by bursts of identical words

Hellinger's kernel

compensates by taking the square root

► Simple and broadly applicable

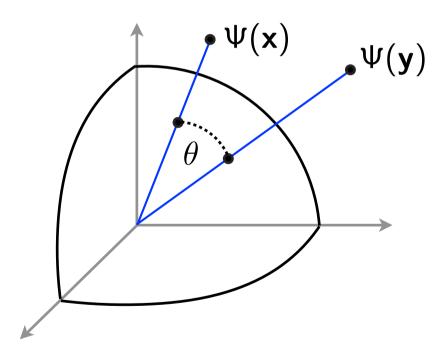
E.g. RootSIFT

Normalization

- Recall: a kernel should encode a useful notion of similarity
- Assumption: any object should be most similar to itself

$$K(\mathbf{x},\mathbf{x}) \geq K(\mathbf{x},\mathbf{y})$$

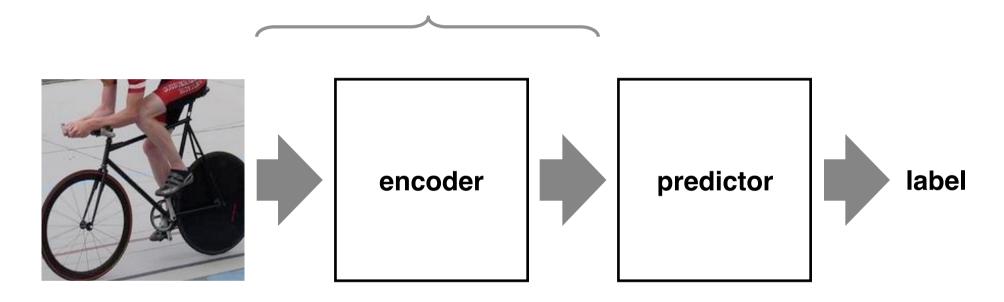
► Easy fix in feature space: measure angles by I²-normalising vectors



$$\cos heta = \left\langle rac{\Psi(\mathbf{x})}{\|\Psi(\mathbf{x})\|}, rac{\Psi(\mathbf{y})}{\|\Psi(\mathbf{y})\|}
ight
angle$$

$$K'(\mathbf{x}, \mathbf{y}) = \frac{K(\mathbf{x}, \mathbf{y})}{\sqrt{K(\mathbf{x}, \mathbf{x})}\sqrt{K(\mathbf{y}, \mathbf{y})}}$$

Part 3: learning the embedding



Learning to compare

For a thorough review: [Weinberger Saul JMLR 2009]

Goal

- compare (rather than classify) objects x, y
- ► formally, learn a distance $d^2(\mathbf{x}, \mathbf{y})$

Desiderata

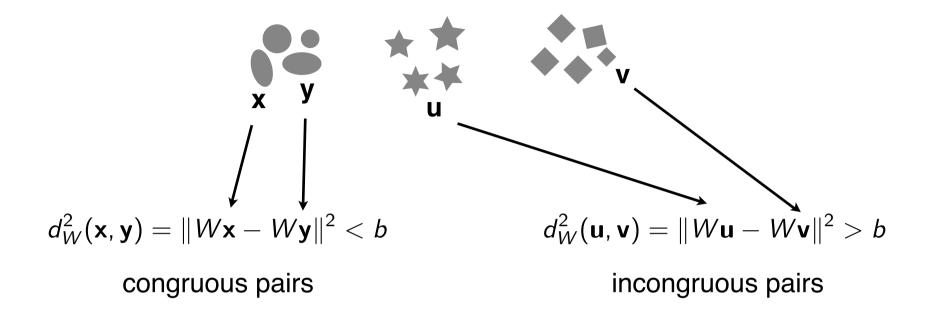
- \blacktriangleright if **x** and **y** are *congruous* \Longrightarrow small distance
- ightharpoonup if **x** and **y** are *incongruous* \Rightarrow large distance

Parametrisation of the distance

Euclidean distance + linear projection W

$$d_W^2(\mathbf{x}, \mathbf{y}) = \|W\mathbf{x} - W\mathbf{y}\|^2$$

Classification-like constraints



- ► For all object pairs **x**, **y**
 - ▶ congruous ⇒ distance smaller than threshold margin
 - ▶ incongruous ⇒ distance larger than threshold + margin

$$d_W^2(\mathbf{x},\mathbf{y}) < b-1, \qquad d_W^2(\mathbf{u},\mathbf{v}) > b+1$$

Learning formulation

$$\min_{W,b} \mathcal{R}(W) + \sum_{(\mathbf{x},\mathbf{y}) \in \mathcal{P}} \max\{0,1-b+d_W^2(\mathbf{x},\mathbf{y})\} + \sum_{(\mathbf{u},\mathbf{v}) \in \mathcal{N}} \max\{0,1+b-d_W^2(\mathbf{u},\mathbf{v}))\}$$

Input: training data

- ightharpoonup congruous pairs \mathcal{P} (i.e., positive)
- \blacktriangleright incongruous pairs \mathcal{N} (i.e., negative)
- ▶ Input: regulariser R(W)
 - controls which type of solution is found
 - may induce smoothness, sparsity, group-sparsity, low rank

► Output: projection matrix *W*

Algorithm and variants

- Convex + sparsity: regularized dual averaging
- Non-convex + fixed dimensionality: stochastic gradient descent

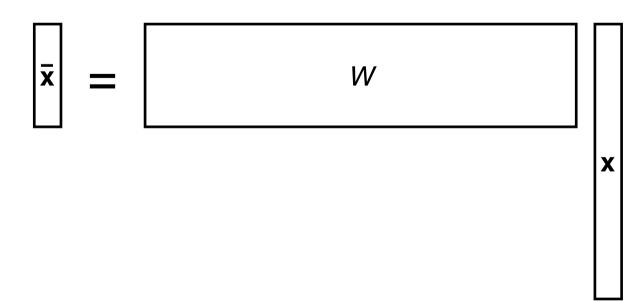
Compare & compress

Euclidean distance

linear projection

$$d_W^2(\mathbf{x}, \mathbf{y}) = \|W\mathbf{x} - W\mathbf{y}\|^2 + \mathbf{x} \in \mathbf{R}^n \xrightarrow{W \in \mathbf{R}^{m \times n}} \bar{\mathbf{x}} = W\mathbf{x} \in \mathbf{R}^m$$

- W improves the data separation (= learns a meaningful similarity)
- W can also reduce the data dimensionality
 - ▶ simply pick m « n



Learning to verify people identities

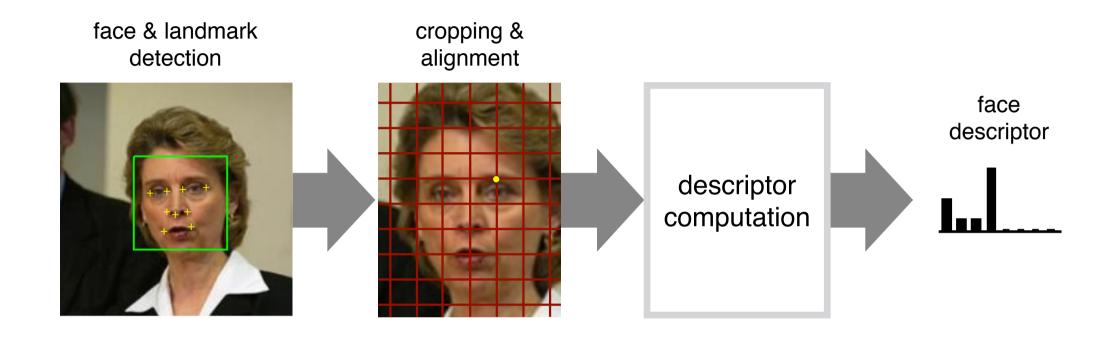
[Simonyan et al. BMVC 2013]

► Task

- decide if two pictures portray the same person
- learning accurate and compact face descriptors

Code available

http://www.robots.ox.ac.uk/~vgg/software/face_desc/

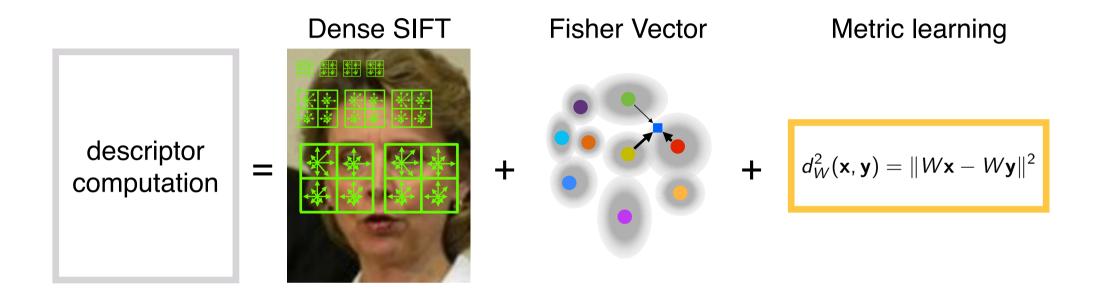


Typical face identification pipeline

- Face detection
- 2. Face registration (may use detected landmarks)
- 3. Descriptor computation (may use detected landmarks)
- 4. Decision (classification, distance learning, dim. reduction, ...)

Fisher Vector Faces (FVF)

[Simonyan et al. 2012]

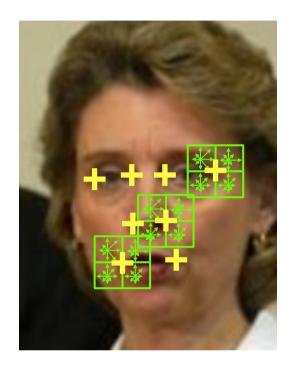


FVF descriptor

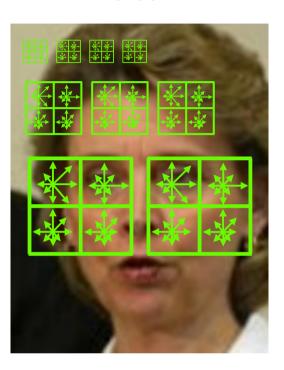
- A. Features: densely sampled, spatially augmented SIFT features
- B. Encoding: Fisher Vectors
- C. Post-processing: metric learning & dimensionality reduction
- D. Optional post-processing: binarization

Landmarks or not?

landmarks



FVF

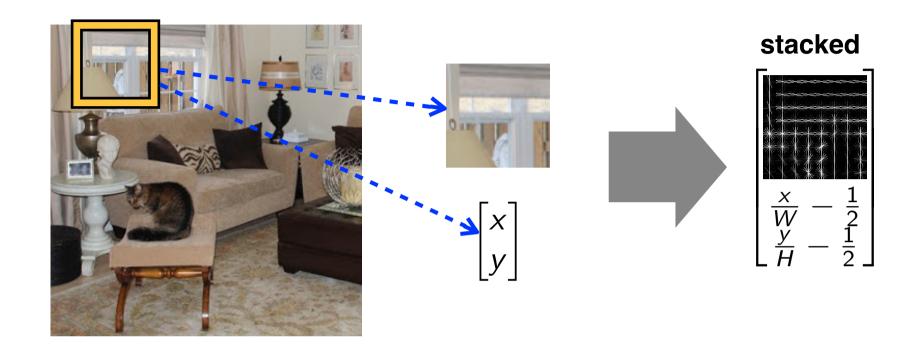


Landmarks

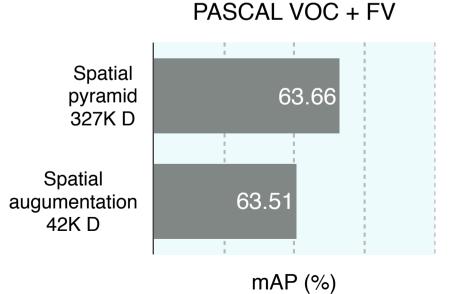
- sample patches at landmarks
- good: alignment
- ▶ bad: expensive, brittle

Dense sampling

- sample patches uniformly
- good: simple, robust
- ▶ bad: no alignment

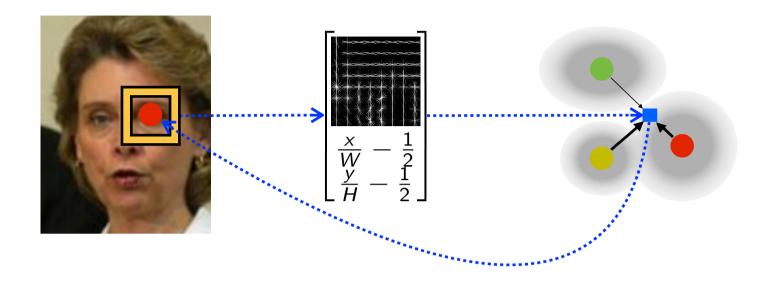


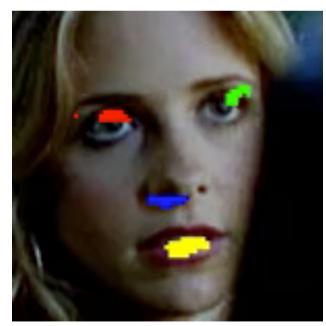
- ► Spatial augmentation [Sanchez et al. PRL 2011]
 - Append (x,y) to descriptors
 - Alternative to spatial pyramid
- Greatly reduced dimensionality
 - ► *e.g.* 7-fold

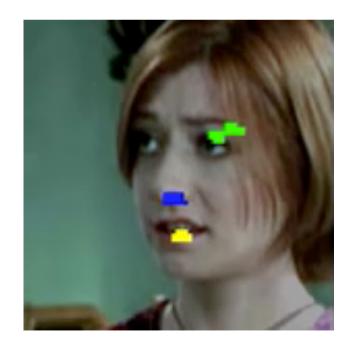


[Chatfield et al. 2014]

Fisher Vectors as part-based models

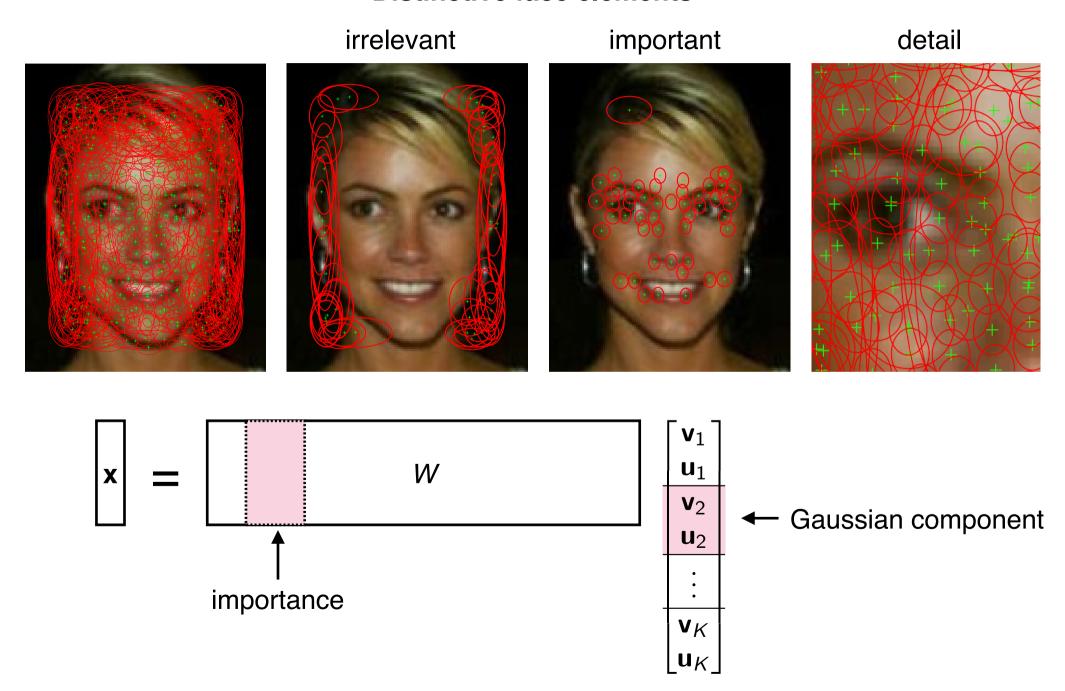






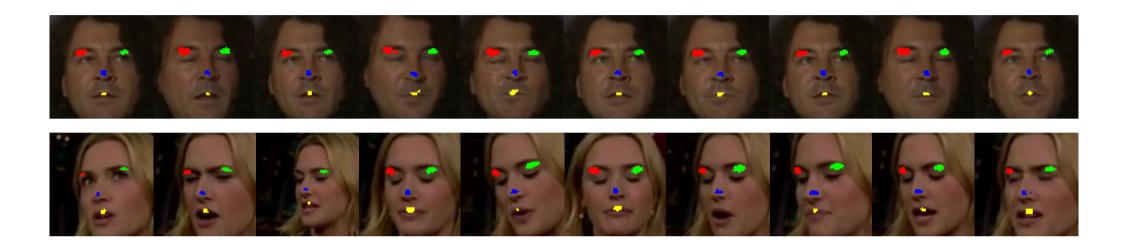
Fisher Vectors as part-based models

Distinctive face elements



Video Fisher Vector Faces (VF2)

[Parkhi et al. CVPR 2014]



► From still images to videos

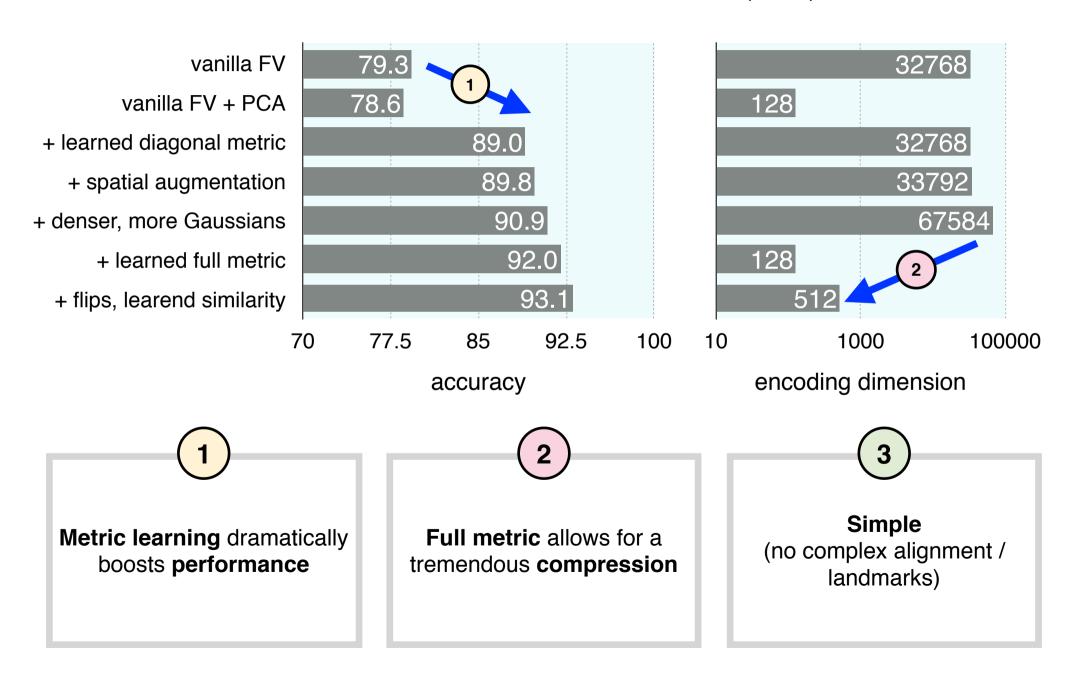
- Hard-assignment FV
- RootSIFT
- Image, video, and jittered pooling

Dimensionality reduction

- Metric learning
- Joint metric and distance learning
- Binarization

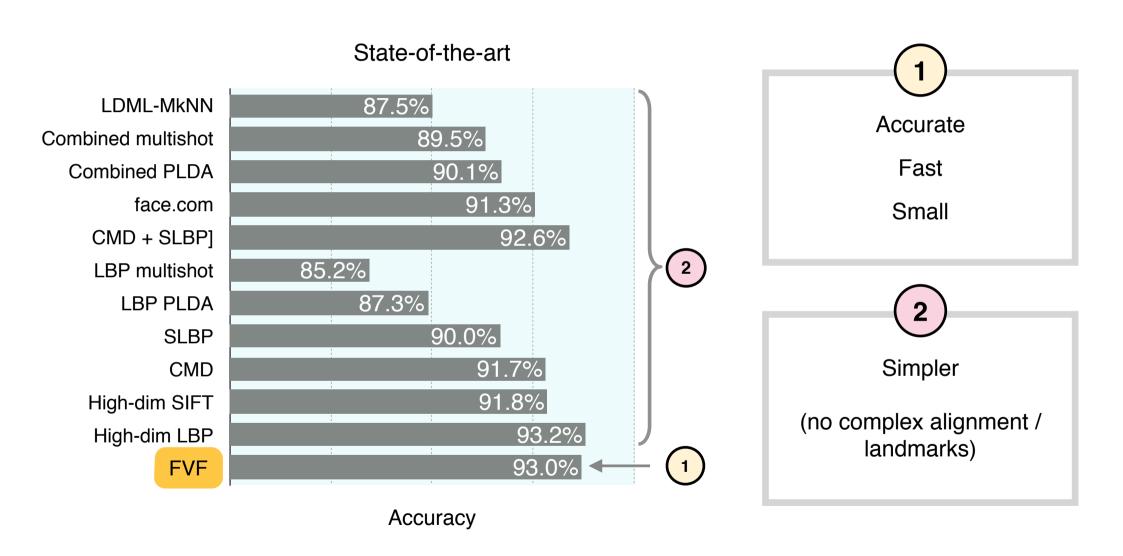
FVF design choices

Benchmark: Labelled Faces in the Wild (LFW)



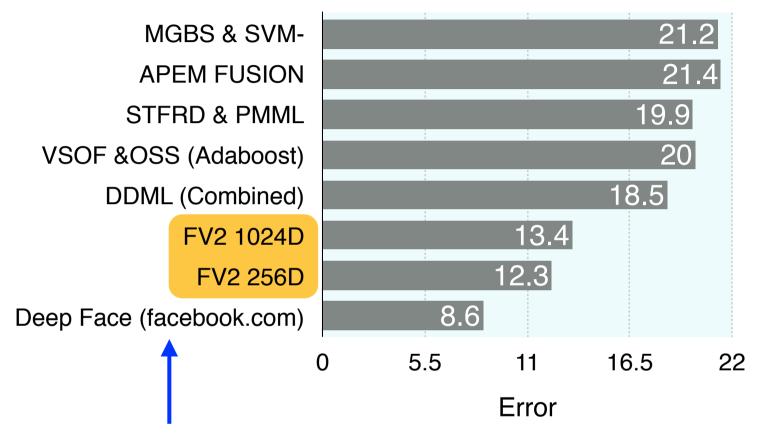
FVF still image performance

Benchmark: Labelled Faces in the Wild



FV² video performance

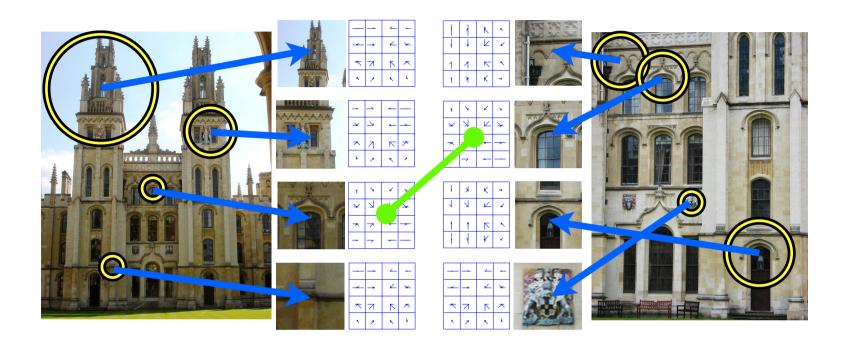
Benchmark: YouTube Faces



requires fairly sophisticated alignment and a lot more training data

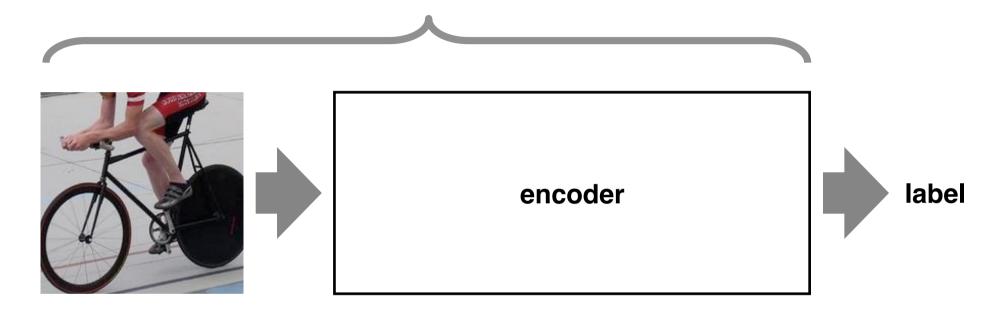
Other applications: local descriptor learning

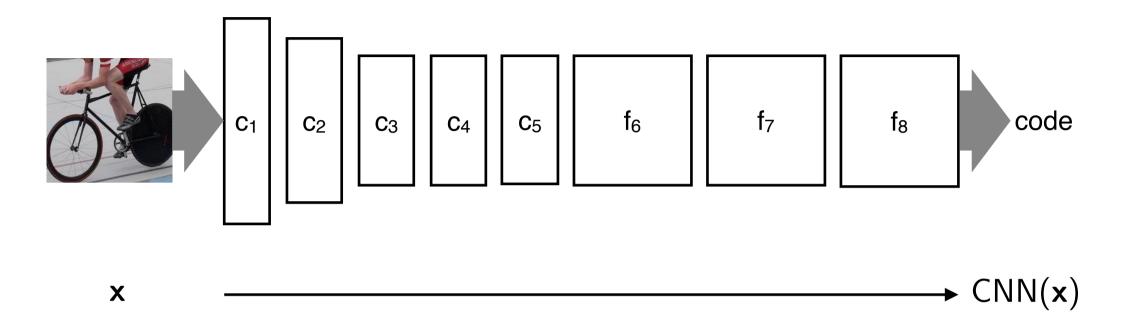
[Simonyan et al. 2011]



- ► Learning to compare & compress works beyond faces
- State-of-the-art local descriptors and instance search
- http://www.robots.ox.ac.uk/~vgg/research/learn_desc/

Part 4: deep learning





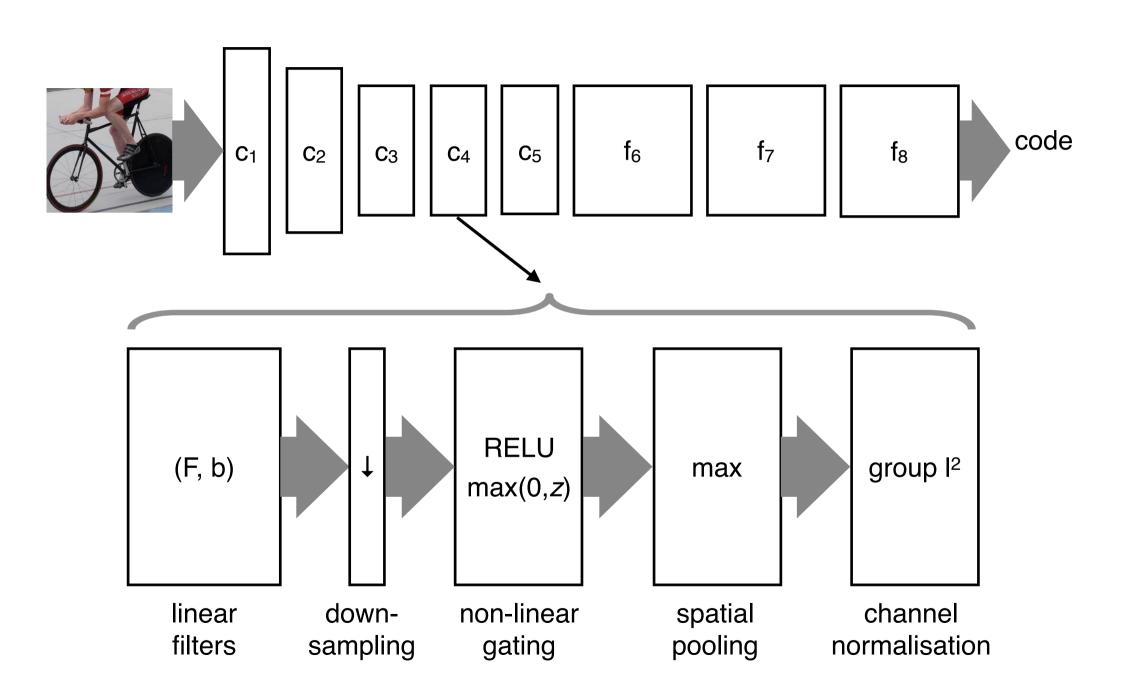
From left to right

- decreasing spatial resolution
- increasing feature dimensionality

► Fully-connected layers

- \triangleright same as convolutional, but with 1 \times 1 spatial resolution
- contain most of the parameters

Convolutional layers



Learning CNNs classifiers

Challenge

many parameters, prone to overfitting

Key ingredients

- very large annotated data •
- heavy regularisation (dropout)
- stochastic gradient descent
- ► GPU(s)

Training time

- ► ~90 epochs
- days—weeks of training
- ▶ requires processing ~150 images/sec

- ▶ 1K classes
- ➤ ~ 1K training images per class
- ➤ ~ 1M training images

What do CNNs learn?

Deep dreams

[Simonyan et al. 14]

Invert a CNN by finding the image that maximises the output of a class

$$\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} \operatorname{CNN}_c(\mathbf{x})$$

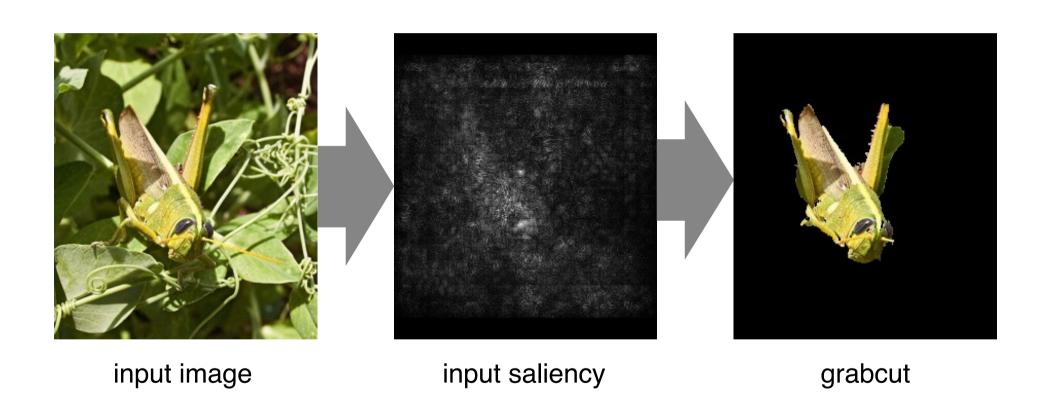
bell pepper

ostrich

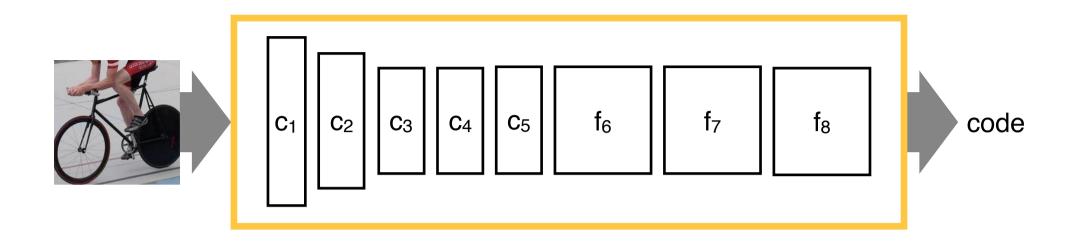
husky

Weakly-supervised learning

- This can be used to segment objects
- Remarkably, no object segmentation or bounding box is given during training



CNNs as general purpose encoders



Pre-trained CNN encoders

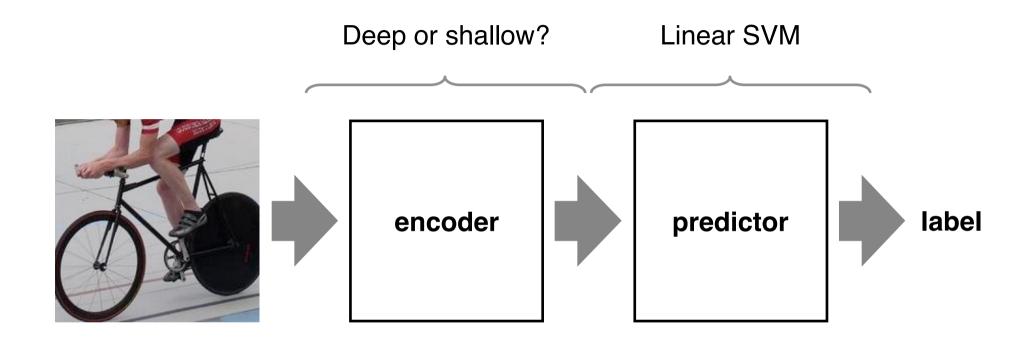
- ▶ Architecture trained on ~ 1M ImageNet images
- Last softmax layer chopped off
- Output used as image encoding

Used as general-purpose features

- ▶ Applied to PASCAL VOC, Caltech, UCSD Birds, MIT Scene 67, ...
- [Zeiler & Fergus, DeCAF, Caffe, ...]

Return of the devil

Evaluating shallow and deep encoders



- ▶ Shallow encoder
 - ► Further Improved Fisher Vector

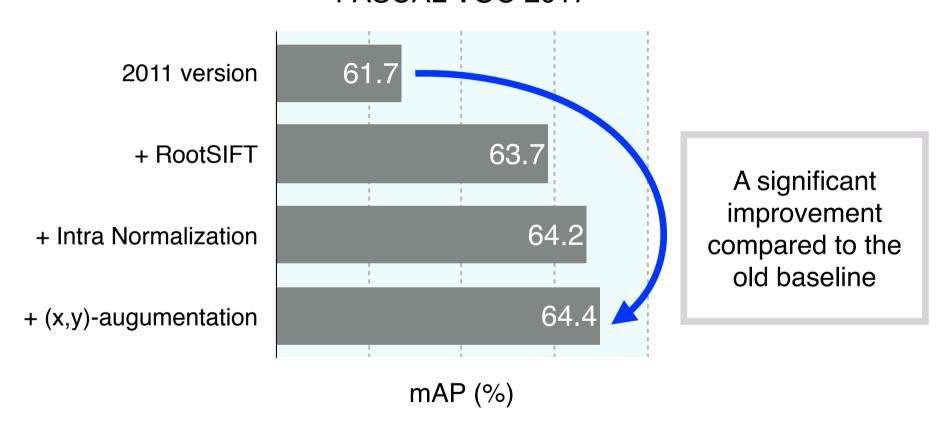
- Deep encoders
 - ► CNN Fast (CNN-F)
 - ► CNN Medium (CNN-M)
 - ► CNN Slow (CNN-S)

[Chatfield et al. 2014 - under revision]

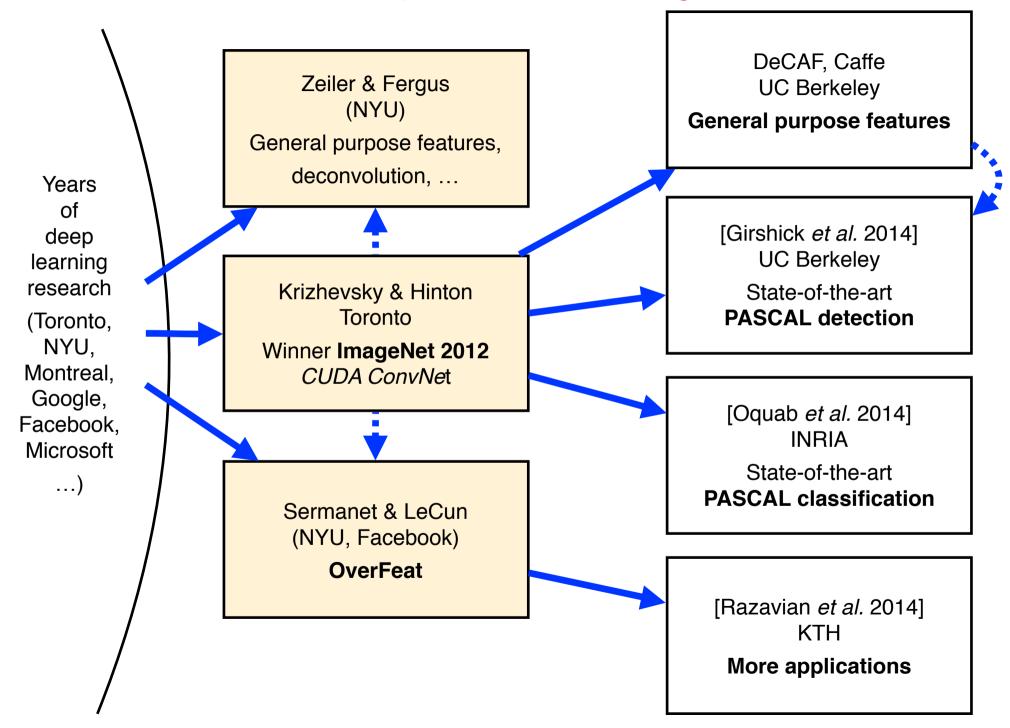
Shallow visual encoding

Pumping Fisher Vectors

PASCAL VOC 2017



Deep visual encodings



Reference implementations

Name	Speed	s/image	Similar to
CNN-S	Slow	1.82	OverFeat
CNN-M	Medium	1.33	Zeiler & Fergus
CNN-F	Fast	0.6	Krizhevsky & Hinton

[Karen Simonyan]

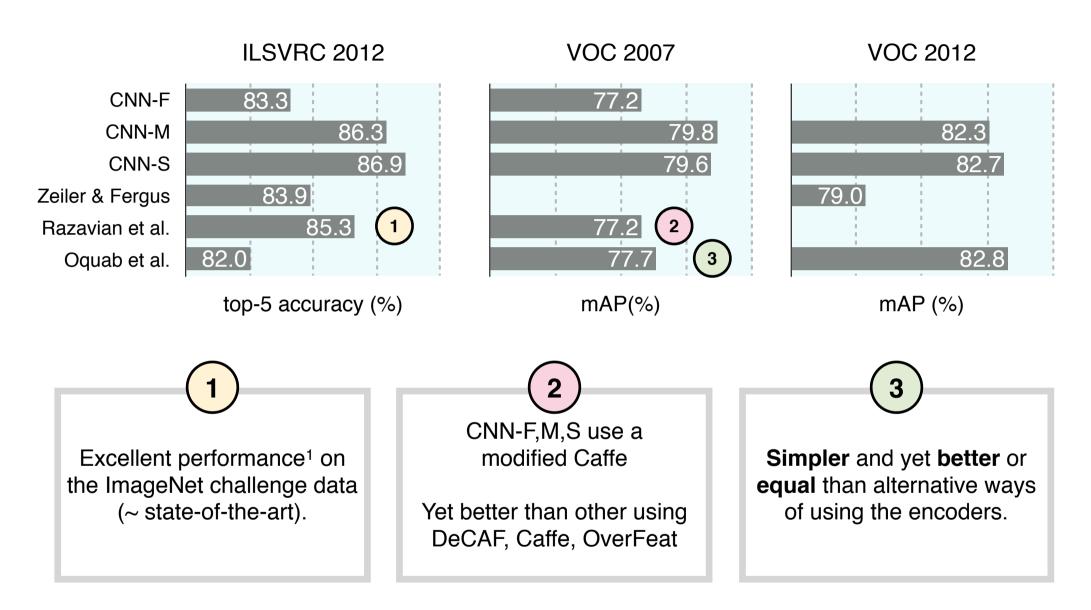
Types

- Inspired by existing implementations
- Trained in-house using one uniform setup

Main differences

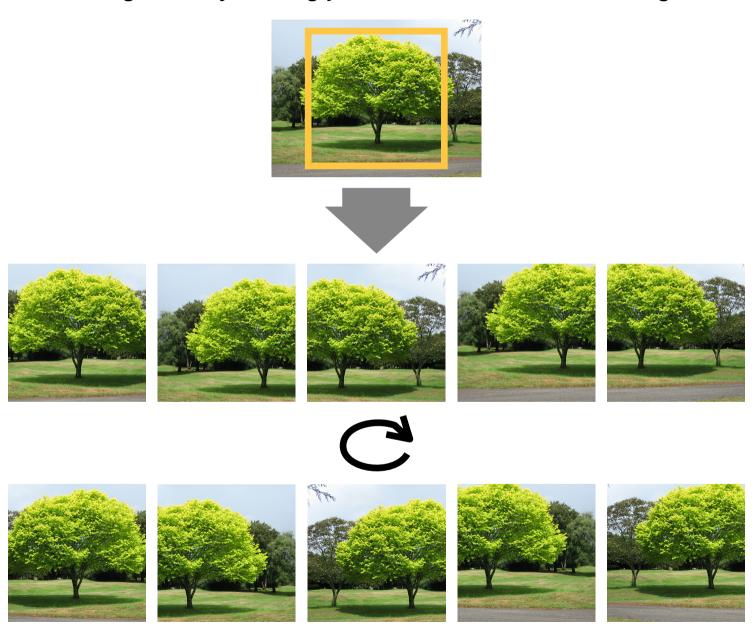
- Number of filters
- downsampling factors

Reference implementations performance



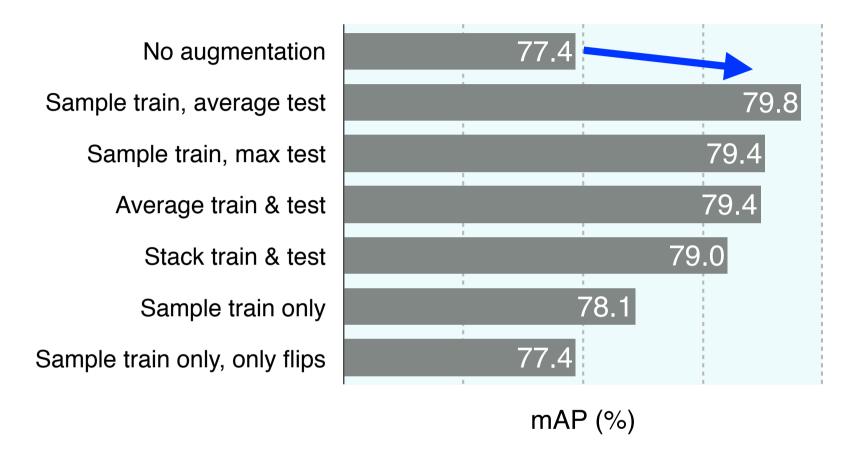
Data augmentation

Augment the training data by adding jittered versons of each image



Data augmentation: CNNs

CNN-M on PASCAL VOC 2007

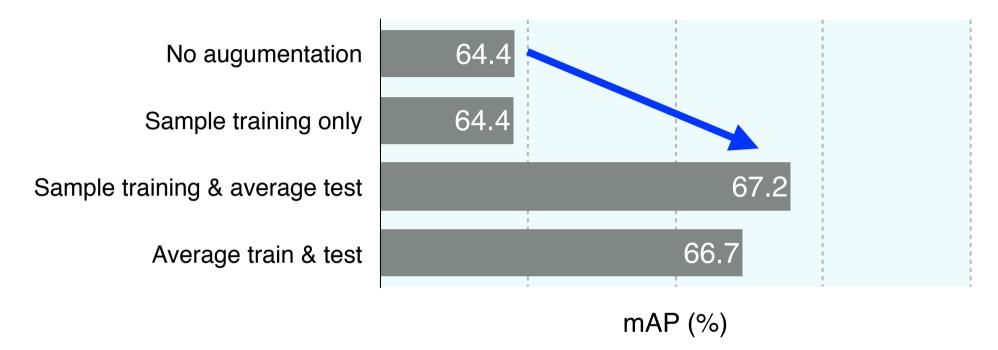


Best practices

- Sample training and average test
- Only flipping is insufficient
- Further augmentation has diminishing returns

Data augmentation: Fisher Vectors

FV on PASCAL VOC 2007

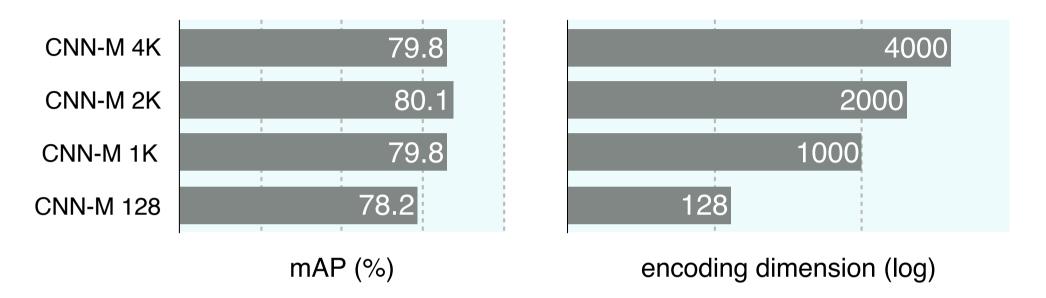


Porting augmentation from CNNs to FV

- Similar benefits observed
- Augmenting test data is essential
- See also [Paulin et al. CVPR 2014]

Dimensionality reduction

Tested on PASCAL VOC 2007



Encodings are often highly redundant

► CNN

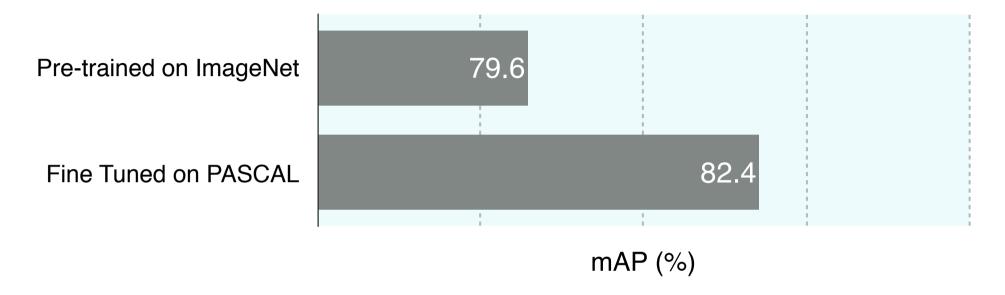
- ▶ reduce dimension 31 times, ~ same performance
- (re-learn last layer using a multi-class loss and PASCAL VOC)

FV dimensionally reduction

- similar compression possible
- ▶ (use e.g. WSABIE [Weston *et al.* 2011])

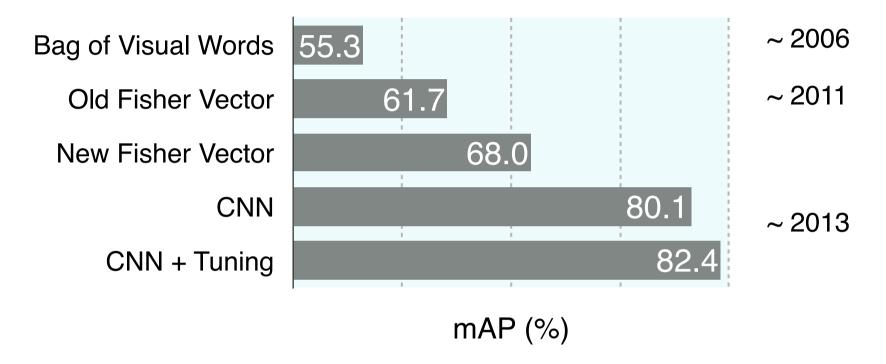
CNN fine-tuning

PASCAL VOC 2007



- ▶ Pre-trained CNNs can be tuned on target dataset
 - Use target data to provide more training images
 - ► Remark: tuning in PASCAL requires a multi-class loss
- Often (but not always) yields a nice improvement

PASCAL VOC 2007

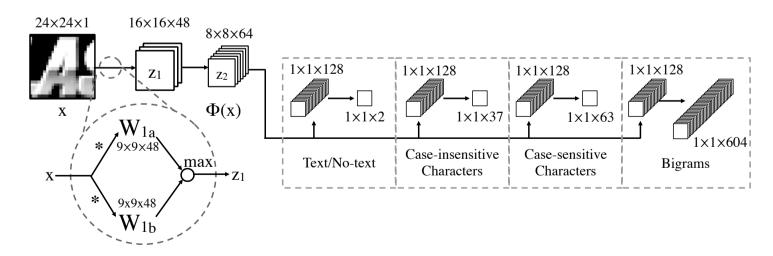


► CNNs

- Best shallow encodings
- Are expensive to train, but fast to evaluate
- ▶ Do provide low-dimensional, general-purpose codes
- Will definitely get much better

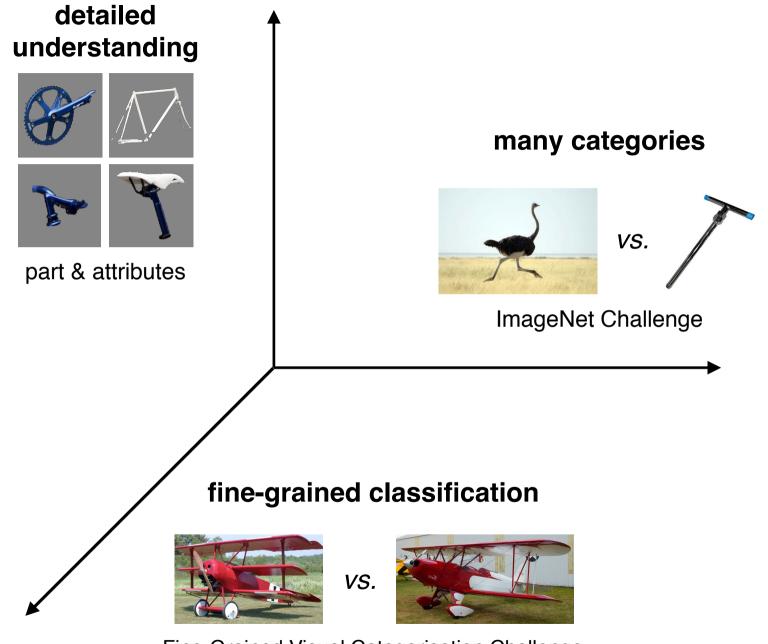
CNNs are versatile

Deep text spotting



[Jadreberg et al. 2014 (under revision)]

Beyond image-based modelling



Fine-Grained Visual Categorisation Challenge

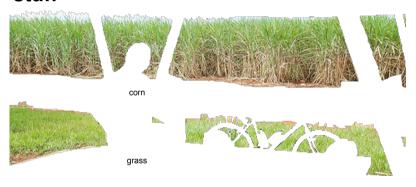
Detailed image understanding

- Breadth
 - large visual vocabulary
 - completeness

- Depth
 - compositionally
 - parts and attributes

- Abstraction
 - surfaces, objects
 - categories, subcategories

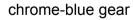
stuff



things



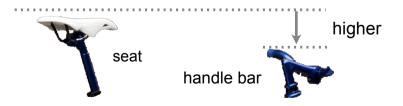
parts, materials, colours, ...



handle bar

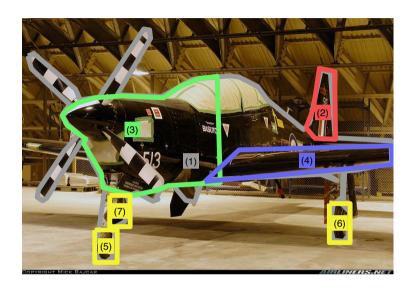
seat

relationships



Objects in detail

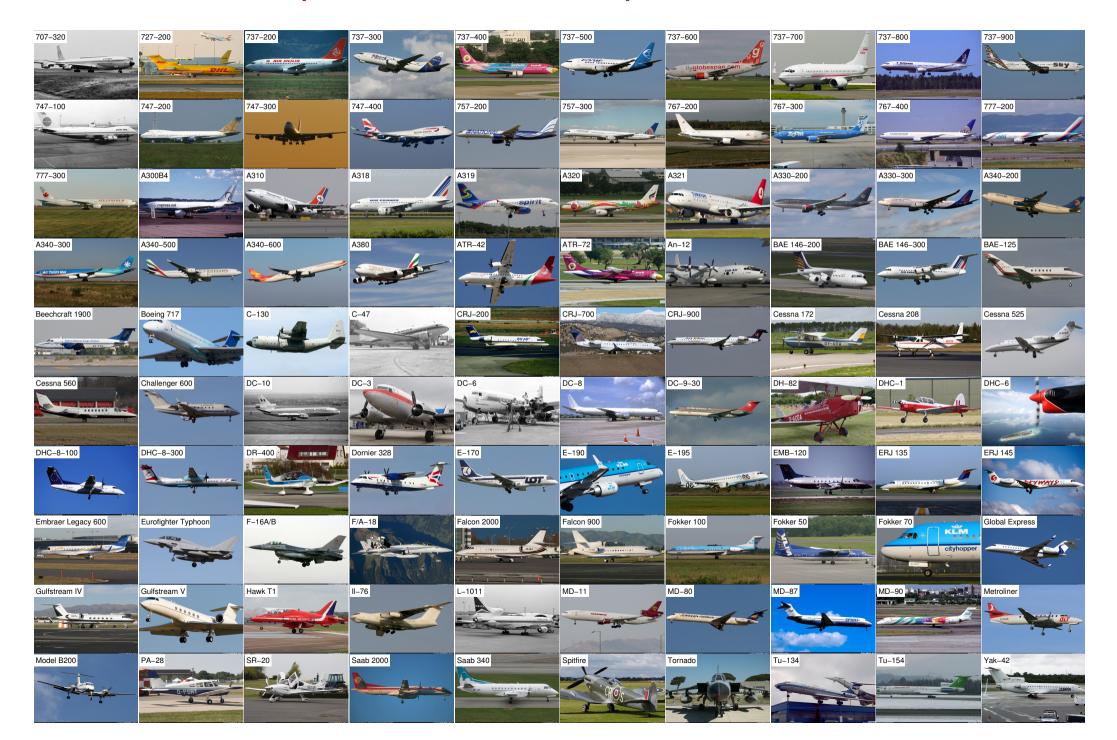
[Vedaldi *et al.* 2014]



1 aeroplane facing-direction: SW; is-airliner: no; is-cargo-plane: no; is-glider: no; is-military-plane: yes; is-propellor-plane: yes; is-seaplane: no; plane-location: on ground/water; plane-size: medium plane; wing-type: single wing plane; undercarriage-arrangement: one-front-two-back; airline: UK—Air Force; model: Short S-312 Tucano T1 2 2 vertical stabilizer tail-has-engine: no-engine 3 nose has-engine-or-sensor: has-engine 4 wing wing-has-engine: no-engine 5 undercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: front-middle 5 undercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: back-left 5 undercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: back-right.

- Describing objects: beyond object recognition and detection
- Requires data annotated with detailed object properties
 - parts & attributes
 - category, instance, and time-dependent properties

Spin-off: FGVC Competition 2013



Describable Texture Dataset

[Cimpoi *et al.* 2014]

Describable Textures

47 texture words5,000 texture images

Each texture described by a combination of words

Byproduct: state-of-the-art material recognition

Credits 93

Ken Chatfield

Omkar Parkhi

Andrew Zisserman

We are seeking a postdoctoral researcher on image understanding and deep learning

References

- [1] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In ICML, 2005.
- [2] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. Speeded-up robust features (SURF). Computer Visionand Image Understanding, 2008.
- [3] M. B. Blaschko, R. B. Girshick, J. Kannala, I. Kokkinos, S. Mahendran, S. Maji, S. Mohammed, E. Rahtu, N. Saphra, K. Simonyan, B. Taskar, D. Weiss, and A. Vedaldi. Towards a detailed understanding of objects and scenes in natural images. Technical report, Johns Hopkins Center For Signal and Language Processing, 2012.
- [4] L. Bo and C. Sminchisescu. Efficient match kernels between sets of features for visual recognition. In Proc. NIPS, 2009.
- [5] A. Bosch, A. Zisserman, and X. Mun~oz. Scene classification via pLSA. In Proc. ECCV, 2006.
- [6] A. Bosch, A. Zisserman, and X. Mun~oz. Image classification using random forests and ferns. In Proc.ICCV, 2007.
- [7] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
- [8] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 24(5), 2002.
- [9] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In Proc. ECCV Workshop on Stat. Learn. in Comp. Vision, 2004.
- [10] C. Elkan. Using the triangle inequality to accelerate k-means. In Proc. ICML, 2003.
- [11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9, 2008.
- [12] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of objectcategories. In Proc. ICCV, 2003.
- [13] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report. Cornell University, 2004.
- [14] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315, 2007.

- [15] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 1977.
- [16] B. Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects with smart dictionaries. In Proc. ECCV. 2008.
- [17] T. Hastie. Support vector machines, kernel logistic regression, and boosting. Lecture Slides, 2003
- [18] T. Joachims. Making large-scale support vector machine learning practical. In Advances in kernel methods: support vector learning, pages 169–184. MIT Press, Cambridge, MA, USA, 1999. [19] T. Joachims. Training linear SVMs in linear time. In Proc. KDD, 2006.
- [20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neuralnetworks. In Proc. NIPS, 2012.
- [21] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of features: Spatial pyramid matching for recognising natural scene categories. In Proc. CVPR, 2006.
- [22] B. Leibe, K. Micolajckzyk, and B. Schiele. Efficient clustering and matching for object class recognition.In Proc. BMVC, 2006.
- [23] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, 1999.
- [24] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2(60):91–110, 2004.
- [25] S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In Proc. ICCV, 2009.
- [26] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In Proc. BMVC, 2002.
- [27] D. Nist'er and H. Stew'enius. Scalable recognition with a vocabulary tree. In Proc. CVPR, 2006.
- [28] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proc. CVPR, 2014.

- [29] O. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A compact and discriminative face descriptor. In Proc. CVPR, 2014.
- [30] M. Paulin, J. Revaud, Z. Harchaoui, C. Schidm, and F. Perronnin. Transformation pursuit in imageclassification. In Proc. CVPR, 2014.
- [31] F. Perronnin, J. S'anchez, and Y. Liu. Largescale image categorization with explicit data embedding. In Proc. CVPR, 2010.
- [32] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, 2007.
- [33] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proc. NIPS, 2007.
- [34] B. Sch"olkopf. The kernel trick for distances. Proc. NIPS, 2001.
- [35] B. Sch"olkopf and A. Smola. Learning with Kernels, chapter Robust Estimators, pages 75 83. MIT Press, 2002.
- [36] B. Sch"olkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.
- [37] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal Estimated sub-GrAdient
- SOlver for SVM. MBP, 2010.
- [38] J. Shawe-Taylor and N. Cristianini. Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.
- [39] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman. Fisher Vector Faces in the Wild. In Proc. BMVC, 2013.
- [40] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learning using convex optimisation. In Proc. ECCV, 2012.
- [41] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep fisher networks for large-scale image classification. In Proc. NIPS. 2013.
- [42] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep fisher networks and class saliency maps for object classification and localisation. In ILSVRC workshop, 2014.

- [43] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In Proc. ICLR, 2014.
- [44] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Gen. Gpu-based video feature tracking and matching. In Workshop on Edge Computing Using New Commodity Architectures, 2006.
- [45] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In Proc. ICCV. 2003.
- [46] N. Slonim and N. Tishby. Agglomerative information bottleneck. In Proc. NIPS, 1999.
- [47] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-baseline stereo. PAMI, 2010.
- [48] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. Girshick, J. Kannala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss, B. Taskar, K. Simonyan, N. Saphra, and S. Mohamed. Understanding objects in detail with fine-grained attributes. In Proc. CVPR, 2014.
- [49] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In Proc. ECCV, 2008.
- [50] G. Wang, Y. zhang, and L. Fei-Fei. Using dependent regions for object categorization in a generative framework. In Proc. CVPR, 2006.
- [51] Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature description. In Proc. ICCV 2011.
- [52] J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image annotation. In Proc. IJCAI, 2011.
- [53] C. K. I. Williams and M. Seeger. Using the Nystr"om method to speed up kernel machines. In Proc. NIPS, 2001.