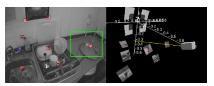
Imperial College London

Qualcomm Augmented Reality Lecture Series:

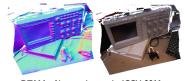
Visual SLAM with an Event-based Camera


Hanme Kim Supervisor: Prof. Andrew Davison

> Robot Vision Group Department of Computing Imperial College London

January 27, 2015

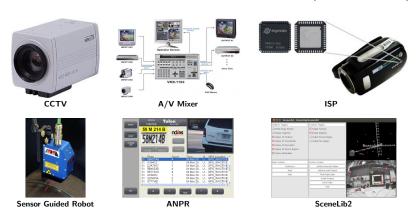
Robot Vision Group


• Principle investigator: Prof. Andrew Davison.

MonoSLAM - Davison, ICCV 2003

KinectFusion - Newcombe et al., ISMAR 2011

DTAM - Newcombe et al., ICCV 2011



Dyson Robotics Lab

Closely linked to the Dyson Robotics Laboratory.

Self Introduction

• 2nd year PhD student with industrial experience (about 12 years).

Visual SLAM Applications

We are interested in visual SLAM applications.

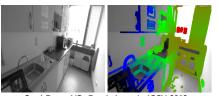
Dyson 360 Eye

Google Tango

Amazon PrimeAir

- They require:
 - fast control feedback;
 - o high dynamic range;
 - o low power consumption and hardware complexity.

Limited by Conventional Imaging Sensors

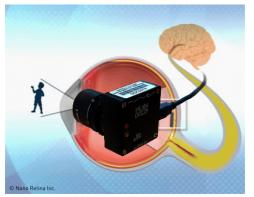

- Only work well with controlled camera motion and scene condition.
- High power consumption (e.g. Hands-free Google Glass with a battery pack on the hand!).
- High hardware complexity (e.g. powerful GPU requirement).

www.techradar.com

Sophisticated State-of-the-Art Algorithms

 Sophisticated algorithms which mainly reduce their computational burden by selecting and processing only informative data.

Semi-Dense VO, Engel, J. et al., ICCV 2013

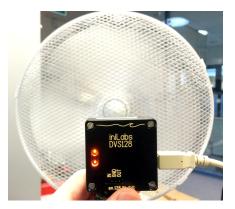


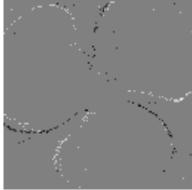
Semi-Direct VO, Forster, C. et al., ICRA 2014

 They still rely on conventional imaging sensors, therefore they still suffer from some of the limitations (e.g. blind between frames, low dynamic range, high power consumption, etc.).

Motivation

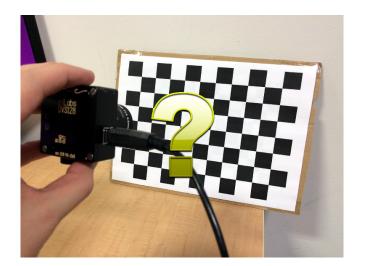
- How to satisfy these requirements of real-time SLAM applications?
- Can bio-inspired silicon retinas from Neuromorphics be a solution?


DVS128, iniLabs & Background from Nano Retina Inc.


Imperial College London

Event-based Camera

DVS (Dynamic Vision Sensor) Live Demo



Event-based Camera

- Advantages:
 - Asynchronous and fast visual measurements, low latency.
 - o High dynamic range.
 - Compressed visual information requires lower transmission bandwidth, storage capacity, processing time, and power consumption.
- Has potential to overcome the limitations of conventional imaging sensors.
- Requires totally new computer vision algorithms.

e.g. How To Calibrate It?

Related Work:

Tracking and Recognition

Tracking algorithms showing its low latency capability.

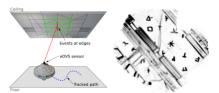
Delbruck, T. and Lichtsteiner, P., 2007

DVS Laser Tracker, 2008

Conradt, J. et al., 2009

Combined with biologically inspired learning approaches.

Pérez-Carrasco, J. A. et al., PAMI 2013



Lee, J. et al., ISCAS 2012

Related Work:

SLAM Applications

SLAM with limitations or extra sensors.

Weikersdorfer, D. et al., ICVS 2013

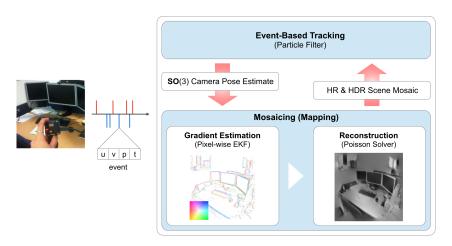
Weikersdorfer, D. et al., ICRA 2014

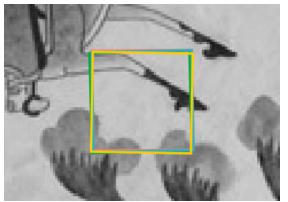
Mueggler, E. et al., IROS 2014

Censi, A. and Scaramuzza, D., ICRA 2014

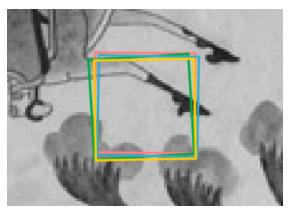
What We Want To Achieve

- 3D Visual SLAM with a single event-based camera:
 - able to track extremely fast 6 DoF camera motion and reconstruct 3D scenes;
 - requires low computational cost, hardware complexity and power consumption;
 - suitable for real world applications.

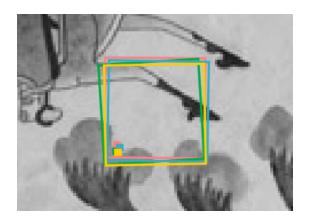


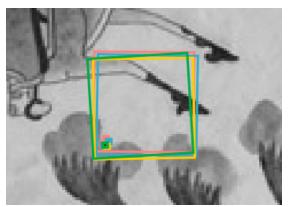

ETAM (Event-based Tracking and Mapping), conceptual drawing

Simultaneous Mosaicing and Tracking with an Event Camera

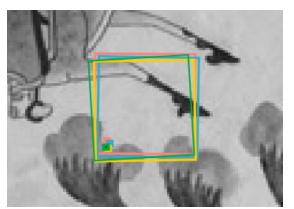

- Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi leng, Andrew J. Davison.
- Published at BMVC (British Machine Vision Conference) 2014.
- Oral presentation (7.7% acceptance rate).
- Best industry paper.

Proposed Algorithm

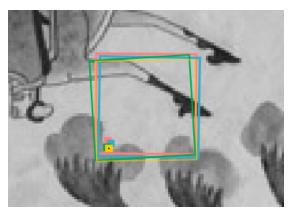


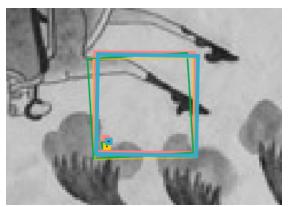


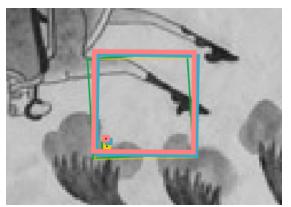
$$\{\mathbf{p}_1^{(t)},\mathbf{p}_2^{(t)},\mathbf{p}_3^{(t)},\mathbf{p}_4^{(t)}\},\mathbf{p}_i^{(t)}=\{\mathtt{R}_i^{(t)}\in\mathbf{SO}(3),w_i^{(t)}\}$$

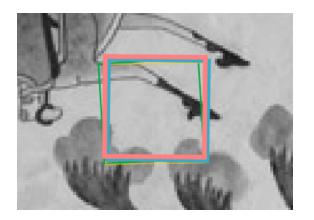


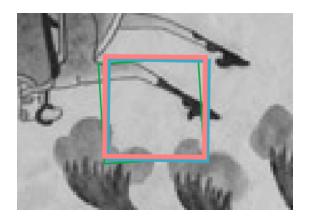
$$\mathbf{R}_i^{(t)} = \mathbf{R}_i^{(t- au)} \exp(\sum_{k=1}^3 \mathbf{n}_k \mathbf{G}_k), n_i \sim \mathcal{N}(\mathbf{0}, \sigma_i^2)$$

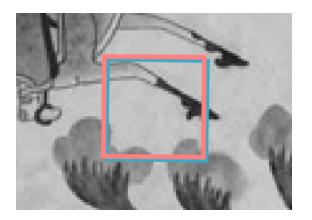


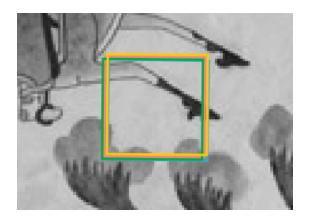

$$w_1^{(t)} = P(z|\mathbf{R}_1^{(t)})w_1^{(t-\tau)}, z = \log(\mathbf{M}(\mathbf{p}_m^{(t)})) - \log(\mathbf{M}(\mathbf{p}_m^{(t-\tau_c)}))$$


$$w_1^{(t)} = P(z|\mathbf{R}_1^{(t)})w_1^{(t-\tau)}, z = \log(\mathbf{M}(\mathbf{p}_m^{(t)})) - \log(\mathbf{M}(\mathbf{p}_m^{(t-\tau_c)}))$$

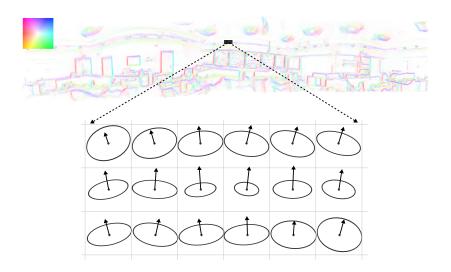

$$w_2^{(t)} = P(z|\mathbb{R}_2^{(t)})w_2^{(t-\tau)}, z = \log(\mathbb{M}(\mathbf{p}_m^{(t)})) - \log(\mathbb{M}(\mathbf{p}_m^{(t-\tau_c)}))$$

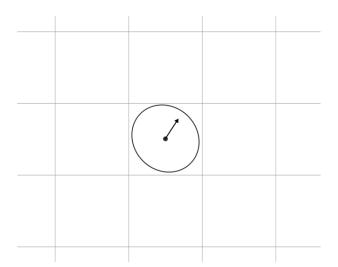


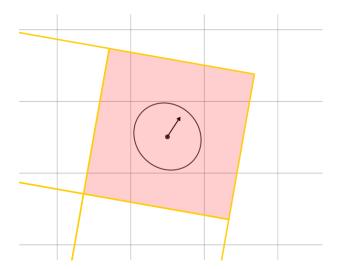

$$w_3^{(t)} = P(z|\mathbf{R}_3^{(t)})w_3^{(t-\tau)}, z = \log(\mathbf{M}(\mathbf{p}_m^{(t)})) - \log(\mathbf{M}(\mathbf{p}_m^{(t-\tau_c)}))$$

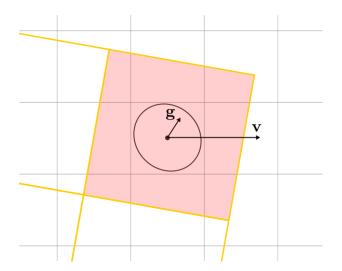


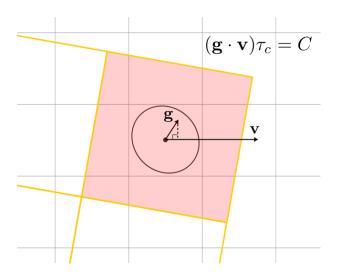
$$w_4^{(t)} = P(z|\mathbf{R}_4^{(t)})w_4^{(t-\tau)}, z = \log(\mathbf{M}(\mathbf{p}_m^{(t)})) - \log(\mathbf{M}(\mathbf{p}_m^{(t-\tau_c)}))$$

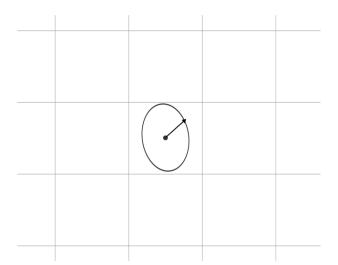


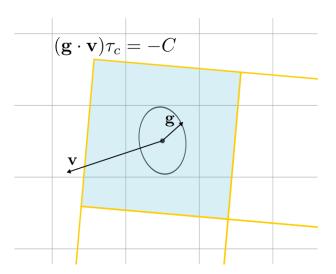


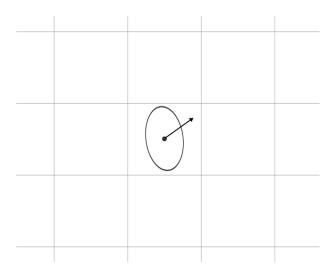


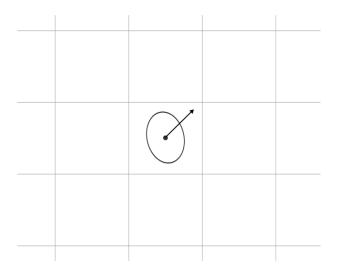

Gradient Estimation

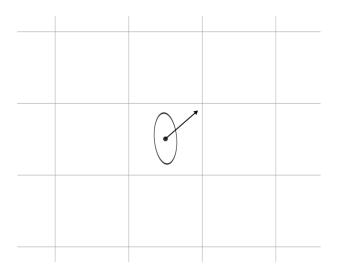


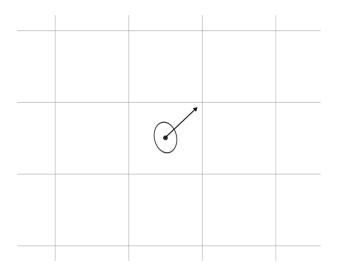


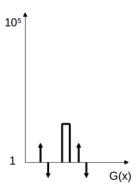

Measurement z and measurement model h.

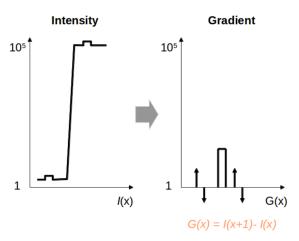

$$z^{(t)} = \frac{1}{\tau_c}, \quad h^{(t)} = \frac{\mathbf{g}^{(t)} \cdot \mathbf{v}^{(t)}}{C}$$


 Update the gradient vector and its covariance matrix using standard EKF equation.

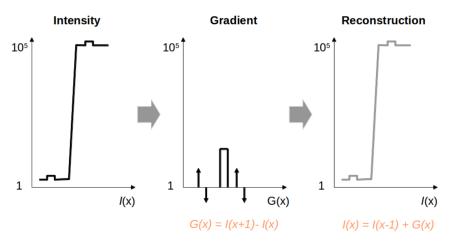

$$\begin{split} \mathbf{g}^{(t)} &= \mathbf{g}^{(t-\tau_c)} + \mathbf{W}\nu, \quad P_{\mathbf{g}}^{(t)} = P_{\mathbf{g}}^{(t-\tau_c)} - \mathbf{W}\mathbf{S}\mathbf{W}^{\top} \\ \nu &= z^{(t)} - h^{(t)} \\ \mathbf{W} &= P_{\mathbf{g}}^{(t-\tau_c)} \frac{\partial h}{\partial \mathbf{g}}^{\top} \mathbf{S}^{-1} \\ \mathbf{S} &= \frac{\partial h}{\partial \mathbf{g}} P_{\mathbf{g}}^{(t-\tau_c)} \frac{\partial h}{\partial \mathbf{g}}^{\top} + \mathbf{R} \end{split}$$






Reconstruction from Gradients in 1D

Gradient


Agrawal, A. and Rasker, R., 2007

Reconstruction from Gradients in 1D

Agrawal, A. and Rasker, R., 2007

Reconstruction from Gradients in 1D

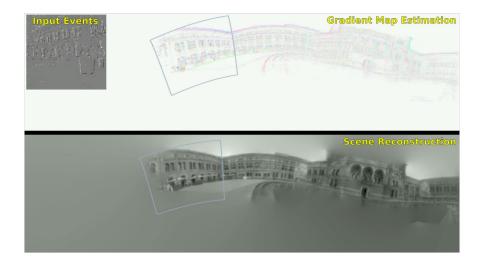
Agrawal, A. and Rasker, R., 2007

Reconstruction from Gradients in 2D

• Reconstruct the log intensity of the image whose gradients M_x and M_y across the whole image domain are close to the estimated gradient g_x and g_y in a least squares sense (Tumblin, J. *et al.*, 2005):

$$J(M) = \int \int (M_x - g_x)^2 + (M_y - g_y)^2 dx dy.$$

The Euler-Lagrange equation to minimise J(M) is:


$$\frac{\partial J}{\partial M} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial J}{\partial M_x} - \frac{\mathrm{d}}{\mathrm{d}y} \frac{\partial J}{\partial M_y} = 0$$

which leads to the well known Poisson equation:

$$abla^2 \mathbf{M} = \frac{\partial}{\partial x} g_x + \frac{\partial}{\partial y} g_y.$$

• We use a sine transform based method to solve the Poisson equation (Agrawal, A. *et al.*, 2005 and 2006).

Demo Video

Contributions and Limitations

Contributions

- Track camera rotation while building a mosaic of a scene purely based on an event stream with no additional sensing.
- Reconstruct high resolution and dynamic range scenes by harnessing the characteristics of event cameras.
- Show that all visual information is in the event stream by reconstructing scenes.

Limitations

- Processing time depends on the # of particles and map resolution.
- No proper bootstrapping.

Current Extensions

- Real-time operation.
 - \circ Passion equation \rightarrow parallelizable primal-dual equation.
 - $\circ\,$ Particle filter based tracking \to EKF based tracking.
 - Track against an estimated gradient map directly.
- Performance improvement.
 - Stronger motion model (e.g. constant velocity or acceleration).
 - Bootstrapping.
 - Continuous-time representation.
- Hope to publish and make it as open source soon.

Move Towards 3D SLAM

- 3D simulator development.
 - Generate synthetic 3D scenes (POV-Ray), trajectories and event datasets.
 - Plan to make it as open source.
- Depth estimation.
 - Events are also related to translating motion and depth.

ETAM (Event-based Tracking and Mapping), conceptual drawing

Things Worth Restating

- Useful pixels are determined in hardware, at no computational cost.
- Event camera vs conventional camera.

	Event Camera	Conventional Camera
Data Rate	40-180kB/s	10MB/s
Latency	few μ s	few ms
Dynamic Range	about 120dB	about 60dB
Power Consumption	few hundreds mW	few W

Much more innovation is happening in Neuromorphics.