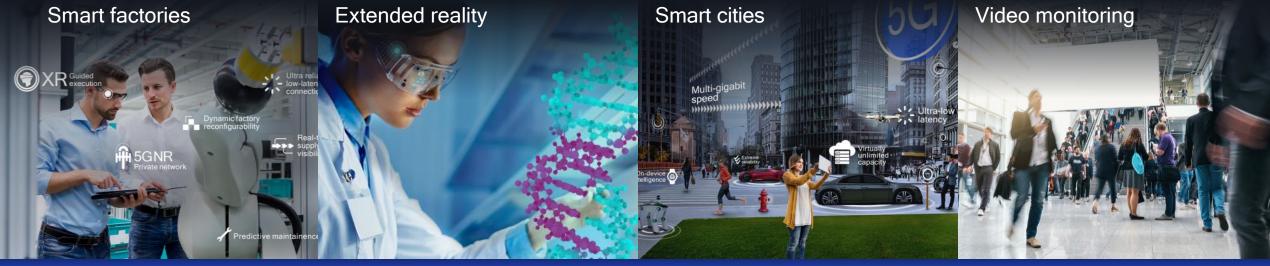


Agenda

- Why efficient machine learning is necessary for AI to proliferate
- Our latest research to make
 Al models more efficient
- Our open-source projects to scale efficient Al

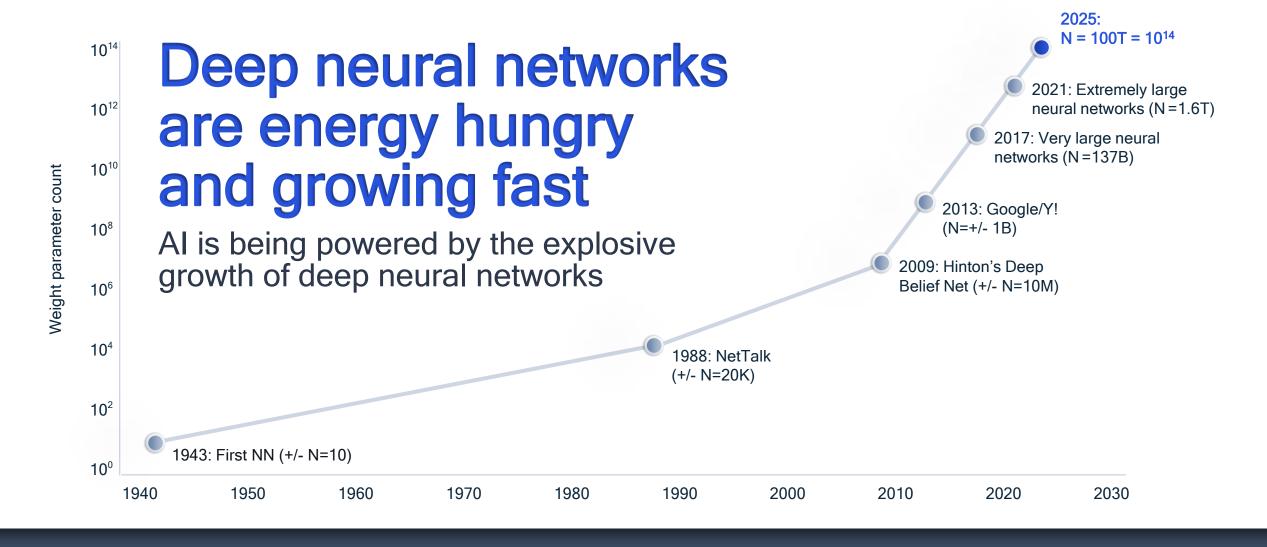


Al is being used all around us

increasing productivity, enhancing collaboration, and transforming industries

Al video analysis is on the rise

Trend toward more cameras, higher resolution, and increased frame rate across devices

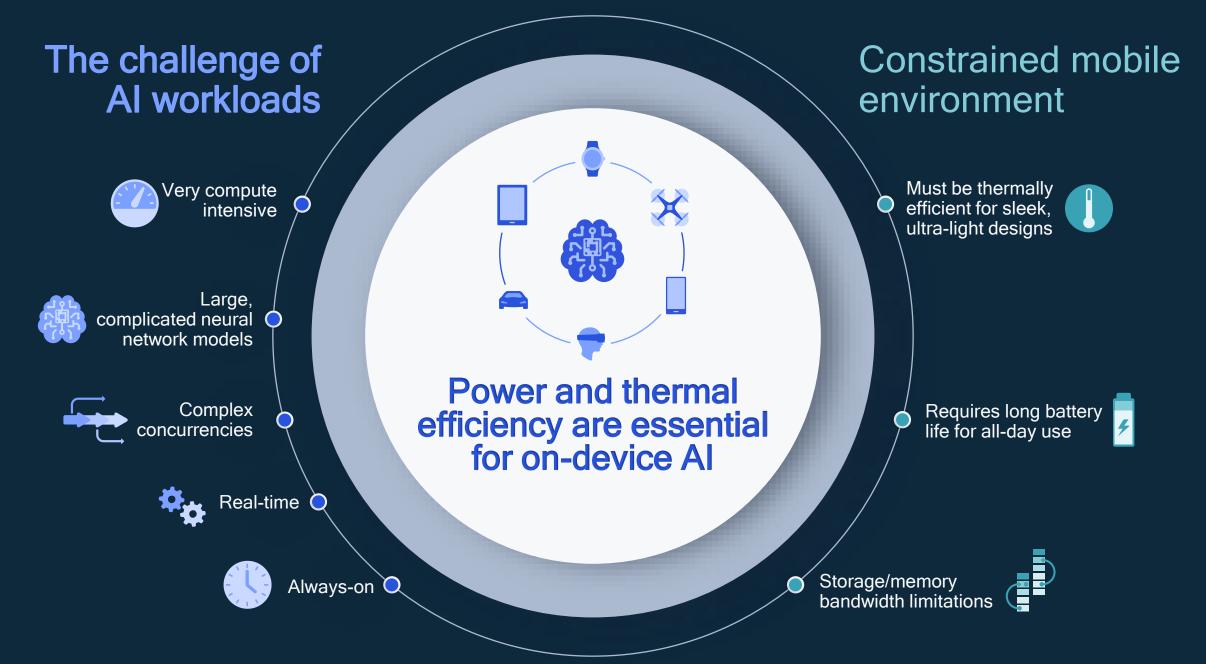


2025

Will we have reached the capacity of the human brain?

Energy efficiency of a brain is 100x better than current hardware

Source: Welling



Quantization

Learning to reduce bit-precision while keeping desired accuracy

Holistic model efficiency research

Multiple axes to shrink Al models and efficiently run them on hardware

Compilation

Learning to compile
Al models for efficient
hardware execution

Compression

Learning to prune model while keeping desired accuracy

Neural architecture search

Learning to design smaller neural networks that are on par or outperform hand-designed architectures on real hardware

Leading research to efficiently quantize Al models

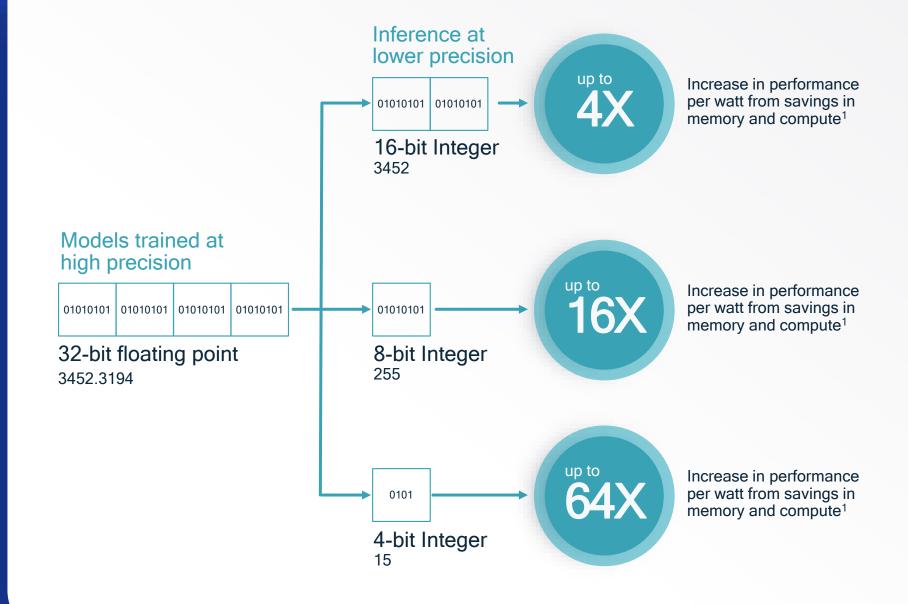
Automated reduction in precision of weights and activations while maintaining accuracy

Promising results show that low-precision integer inference can become widespread

Virtually the same accuracy between a FP32 and quantized Al model through:

- Automated, data free, post-training methods
- Automated training-based mixed-precision method

Significant performance per watt improvements through quantization



1: FP32 model compared to quantized model 7

Pushing the limits of what's possible with quantization

Data-free quantization

How can we make quantization as simple as possible?

Created an automated method that addresses bias and imbalance in weight ranges:

- No training
- Data free

AdaRound

Is rounding to the nearest value the best approach for quantization?

Created an automated method for finding the best rounding choice:

- No training
- Minimal unlabeled data

Bayesian bits

Can we quantize layers to different bit widths based on precision sensitivity?

Created a novel method to learn mixed-precision quantization:

- Training required
- Training data required
- Jointly learns bit-width precision and pruning

SOTA 8-bit results

Making 8-bit weight quantization ubiquitous

Accuracy drop for MobileNet V2 against FP32 model

Data-Free Quantization Through Weight Equalization and

Bias Correction (Nagel, van Baalen, et al., ICCV 2019)

SOTA 4-bit weight results

Making 4-bit weight quantization ubiquitous

Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al., ICML 2020)

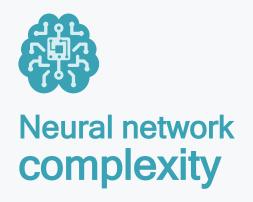
SOTA mixed-precision results

Automating mixed-precision quantization and enabling the tradeoff between accuracy and kernel bit-width

Accuracy drop for MobileNet V2 against FP32 model for mixed precision model with computational complexity equivalent to a 4-bit weight model

Bayesian Bits: Unifying Quantization and Pruning van Baalen, Louizos, et al., NeurlPS 2020)

SOTA: State-of-the-art



Many state-of-the-art neural network solutions are large, complex, and do not run efficiently on target hardware For different tasks and use case cases, many different neural networks are required

Deploying neural networks to many different devices with different configurations and changing software is required Compute and engineering resources for training plus evaluation are too costly and time consuming

Optimizing and deploying state-of-the-art Al models for diverse scenarios at scale is challenging

Neural Architecture Search

An automated way to learn a network topology that can achieve the best performance on a certain task

Search space

Set of operations and how they can be connected to form valid network architectures

Search algorithm

Method for sampling a population of good network architecture candidates

Evaluation strategy

Method to estimate the performance of sampled network architectures

Existing NAS solutions do not address all the challenges

Lack diverse search

Hard to search in diverse spaces, with different block-types, attention, and activations Repeated training phase for every new scenario

High cost

Brute force search is expensive >40,000 epochs per platform

Do not scale

Repeated training phase for every new device >40,000 epochs per platform

Unreliable hardware models

Requires differentiable cost-functions
Repeated training phase for every new device

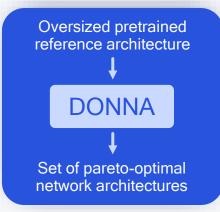
Introducing new AI research

DONA Distilling Optimal Neural Network Architectures

Efficient NAS with hardware-aware optimization

A scalable method that finds pareto-optimal network architectures in terms of accuracy and latency for any hardware platform at low cost

Starts from an oversized pretrained reference architecture



Diverse search to find the best models

Supports diverse spaces with different cell-types, attention, and activation functions (ReLU, Swish, etc.)

Low cost

Low start-up cost of 1000-4000 epochs, equivalent to training 2-10 networks from scratch

Scalable

Scales to many hardware devices at minimal cost

Reliable hardware measurements

Uses direct hardware measurements instead of a potentially inaccurate hardware model

DONNA 4-step process

Objective: Build accuracy model of search space once, then deploy to many scenarios

Define reference and search space once

Define backbone:

- Fixed channels
- Head and Stem

Varying parameters:

- Kernel Size
- Expansion Factors
- Network depth
- Network width
- Attention/activation
- Different efficient layer types

Define reference architecture and search-space once

A diverse search space is essential for finding optimal architectures with higher accuracy

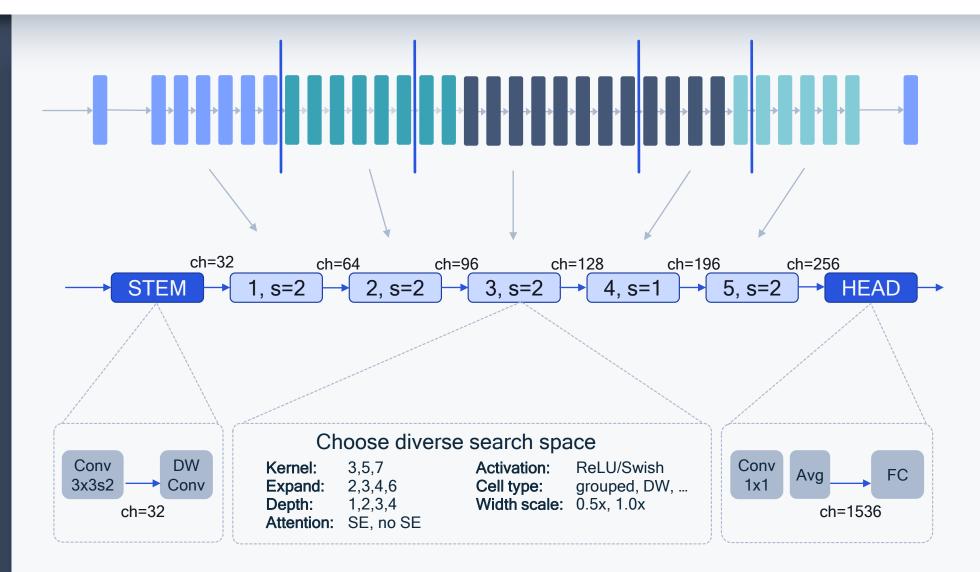
Select reference architecture

The largest model in the search-space

Chop the NN into blocks Fix the STEM, HEAD, # blocks, strides, # channels at block-edge

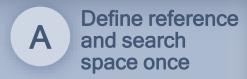
Choose search space

Diverse factorized hierarchical search space, including variable kernelsize, expansion-rate, depth, # channels, cell-type, activation, attention



Ch: channel: SE: Squeeze-and-Excitation

Objective: Build accuracy model of search space once, then deploy to many scenarios



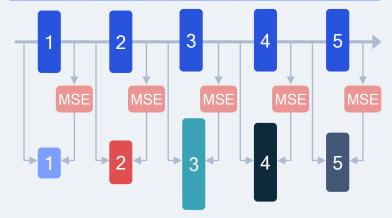
Define backbone:

- Fixed channels
- Head and Stem

Varying parameters:

- Kernel Size
- Expansion Factors
- Network depth
- Network width
- Attention/activation
- Different efficient layer types

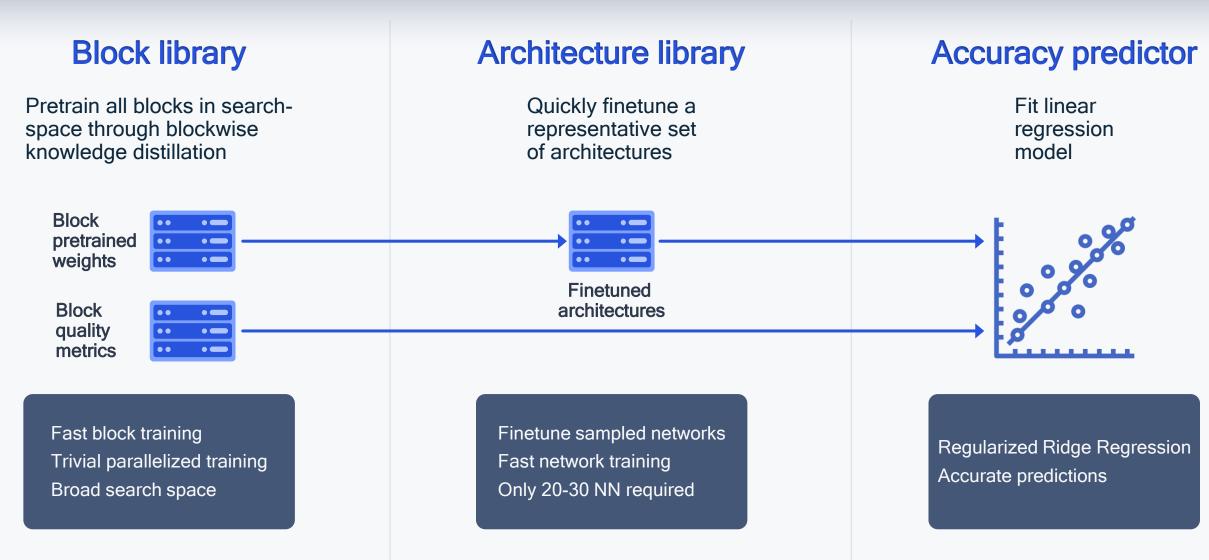
Build accuracy model via Knowledge Distillation (KD) once



Use quality of blockwise approximations to build accuracy model

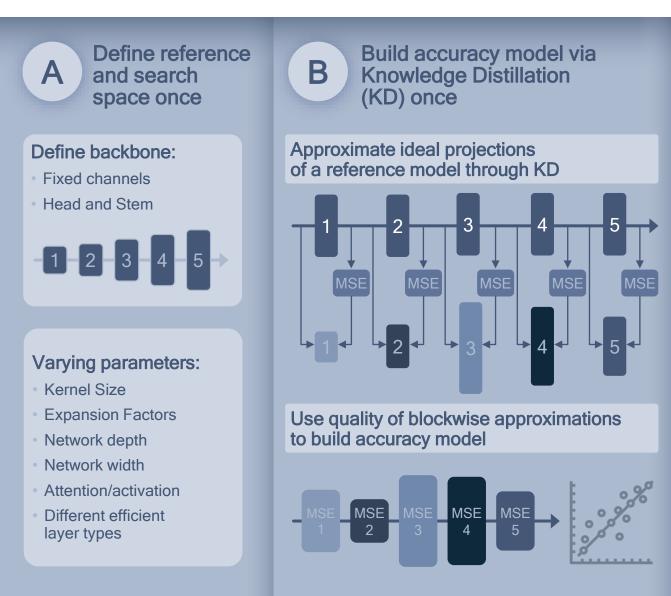
Build accuracy predictor via BKD once

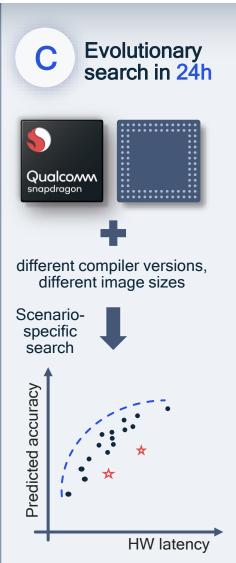
Low-cost hardware-agnostic training phase



BKD: blockwise knowledge distillation

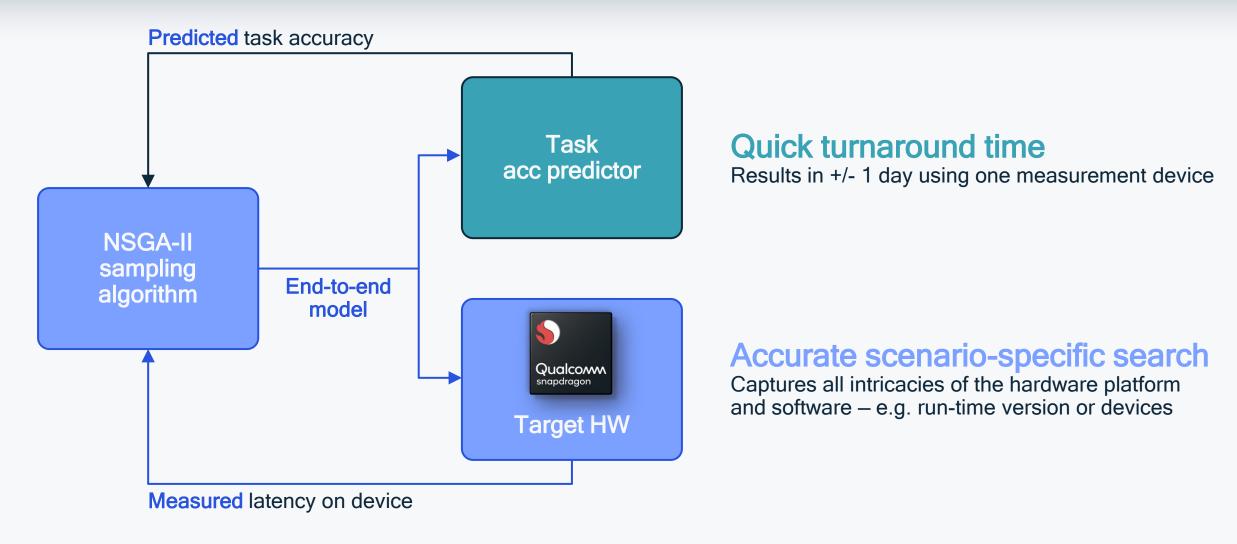
Objective: Build accuracy model of search space once, then deploy to many scenarios





Evolutionary search with real hardware measurements

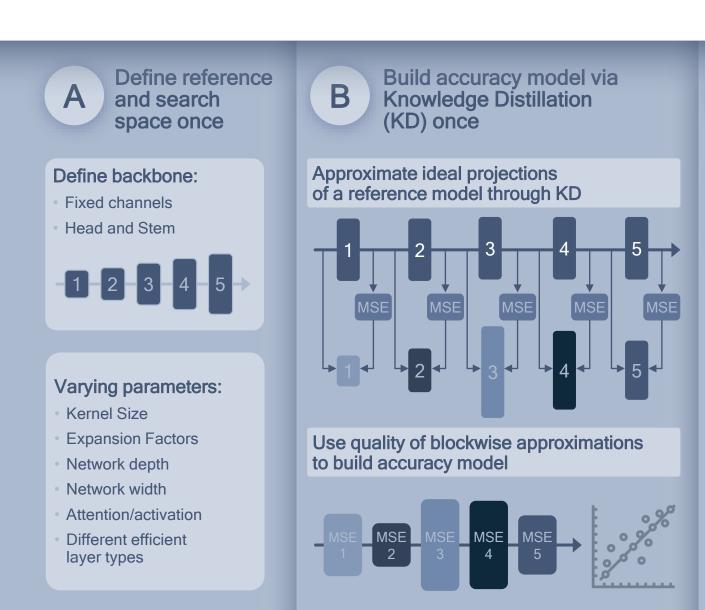
Scenario-specific search allows users to select optimal architectures for real-life deployments

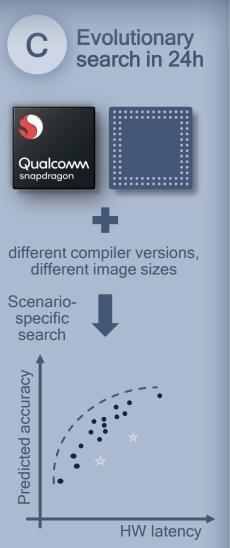


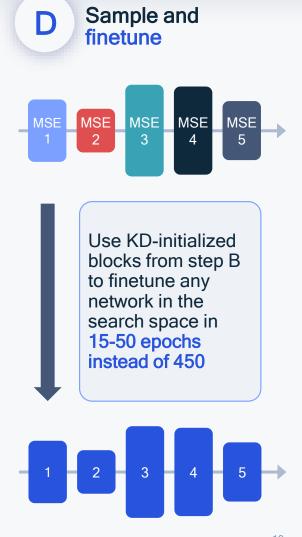
NSGA: Non-dominated Sorting Genetic Algorithm 18

DONNA 4-step process

Objective: Build accuracy model of search space once, then deploy to many scenarios

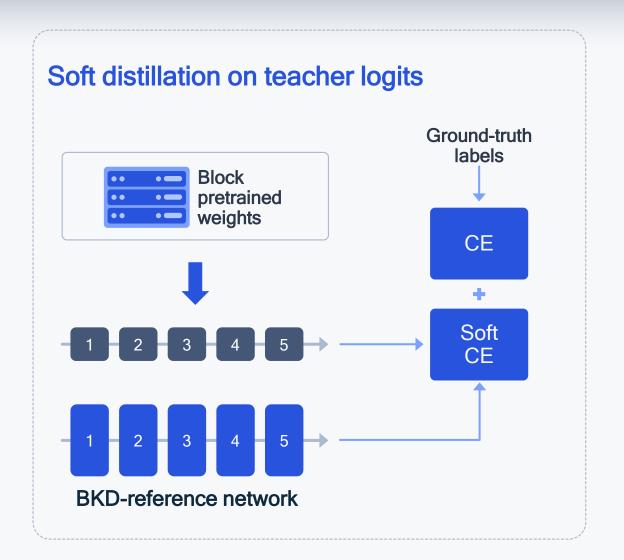


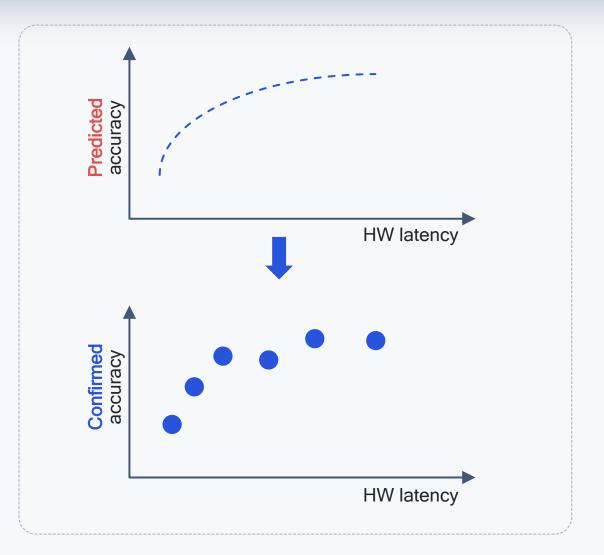




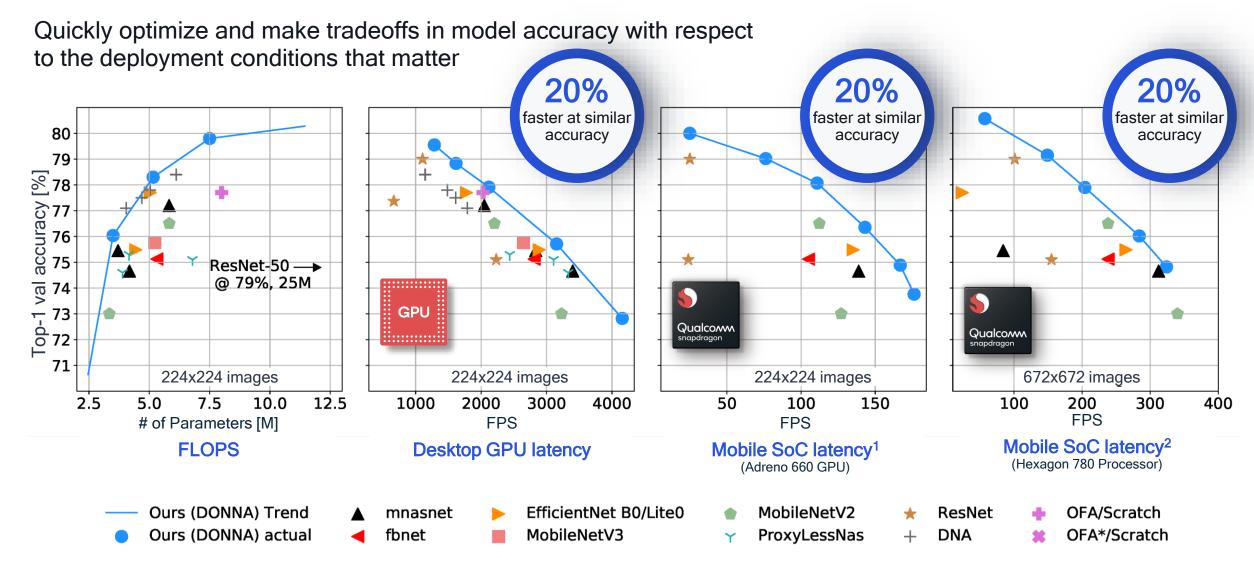
Quickly finetune predicted Pareto-optimal architectures

Finetune to reach full accuracy and complete hardware-aware optimization for on-device AI deployments





DONNA finds state-of-the-art networks for on-device scenarios



DONNA efficiently finds optimal models over diverse scenarios

Cost of training is a handful of architectures*

Method	Granularity	Macro-diversity	Search-cost 1 scenario [epochs]	Cost / scenario 4 scenarios [epochs]	Cost / scenario ∞ scenarios [epochs]
OFA	Layer-level	Fixed	1200+10×[25 – 75]	550 — 1050	250 – 750
DNA	Layer-level	Fixed	770+10×450	4700	4500
MNasNet	Block-level	Variable	40000+10×450	44500	44500
DONNA	Block-level	Variable	4000+10×50	1500	500
Good OK Not good					

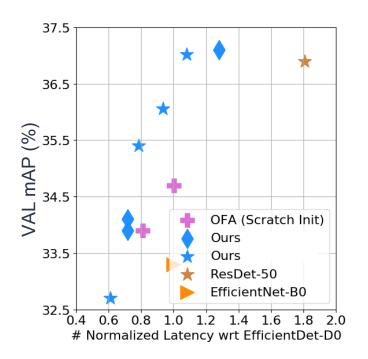
DONNA provides MnasNet-level diversity at 100x lower cost

*Training 1 model from scratch = 450 epochs

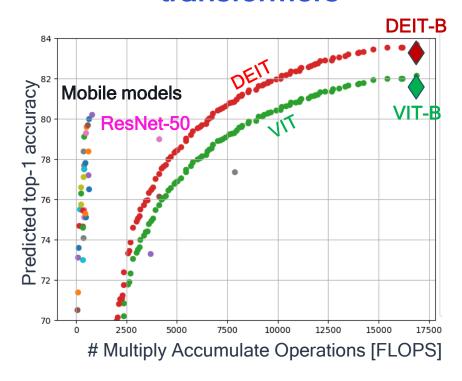
DONNA finds state-of-the-art networks for on-device scenarios

Quickly optimize and make tradeoffs in model accuracy with respect to the deployment conditions that matter

Object detection



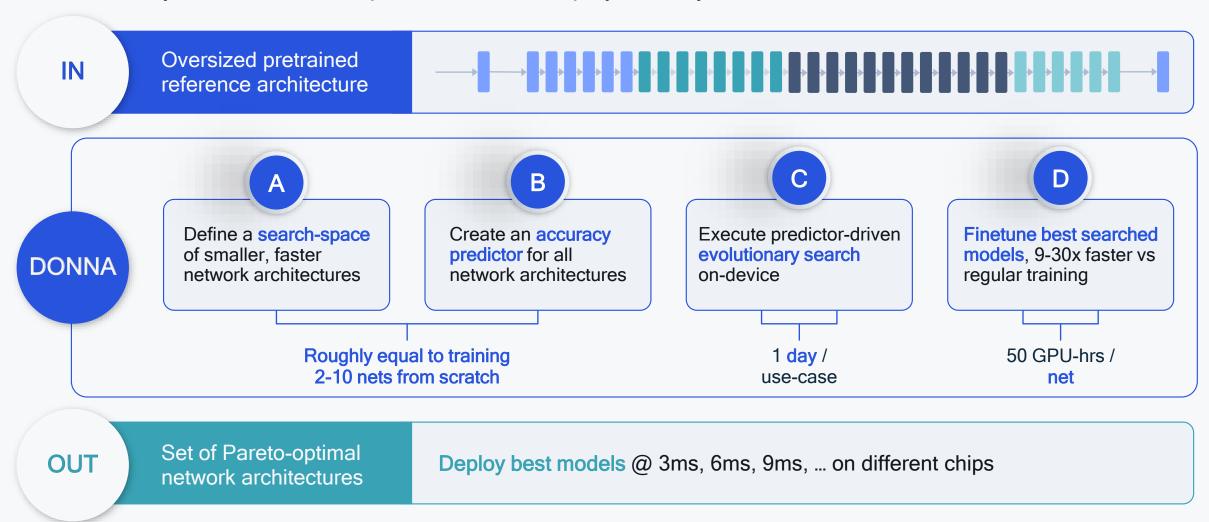
Vision transformers

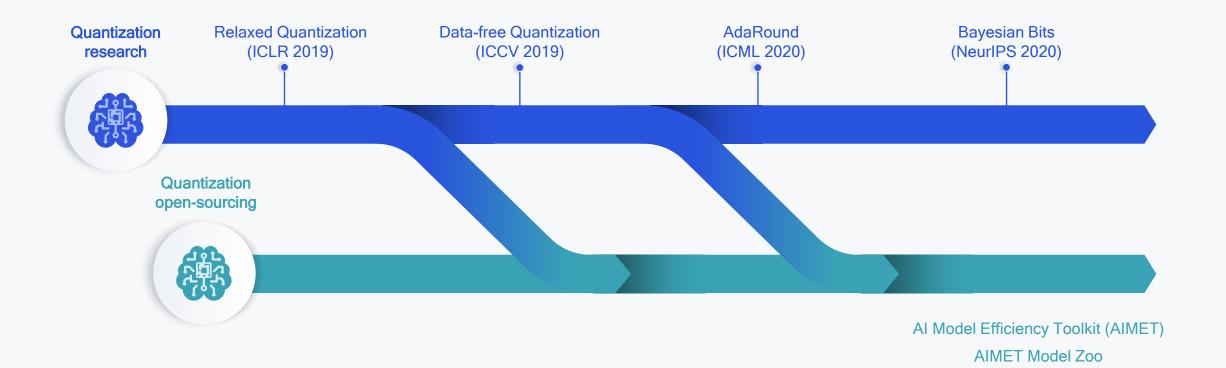


DONNA applies directly to downstream tasks and non-CNN neural architectures without conceptual code changes

User perspective for DONNA

Build accuracy model of search space once, then deploy to many scenarios





Leading AI research and fast commercialization

Driving the industry towards integer inference and power-efficient Al

AIMET & AIMET Model Zoo

Open-source projects to scale model-efficient AI to the masses

AIMET makes AI models small

Open-sourced GitHub project that includes state-of-the-art quantization and compression techniques from Qualcomm Al Research

If interested, please join the AIMET GitHub project: https://github.com/quic/aimet

Features:

State-of-the-art network compression tools

State-of-the-art quantization tools

Support for both TensorFlow and PyTorch

Benchmarks and tests for many models Developed by professional software developers

AIMET

Providing advanced model efficiency features and benefits

Benefits

Lower power

Lower memory bandwidth

Maintains model accuracy

Lower storage

Higher performance

Simple ease of use

Features

Quantization

State-of-the-art INT8 and INT4 performance

Post-training quantization methods, including Data-Free Quantization and Adaptive Rounding (AdaRound) – coming soon

Quantization-aware training
Quantization simulation

Compression

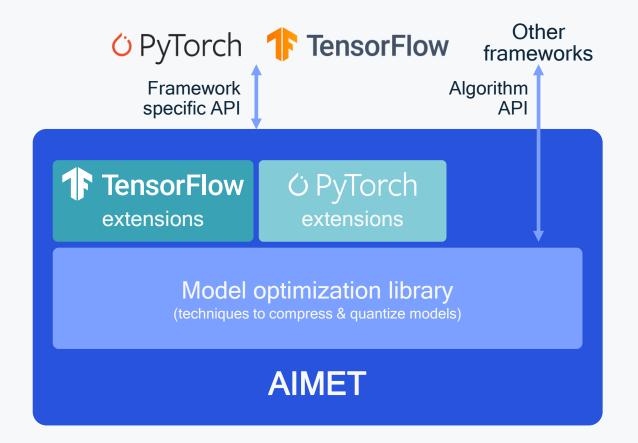
Efficient tensor decomposition and removal of redundant channels in convolution layers

Spatial singular value decomposition (SVD)
Channel pruning

Visualization

Analysis tools for drawing insights for quantization and compression

Weight ranges
Per-layer compression sensitivity



APIs invoked directly from the pipeline

Supports TensorFlow and PyTorch Direct algorithm API frameworks

User-friendly APIs

```
compress_model (model,
eval_callback=obj_det_eval,
compress_scheme=Scheme.spatial_svd, ... )
equalize_model (model, ...)
```

AIMET features and APIs are easy to use

Designed to fit naturally in the AI model development workflow for researchers, developers, and ISVs

Data Free Quantization results in AIMET

Post-training technique enabling INT8 inference with very minimal loss in accuracy

% Reduction in accuracy between FP32 ad INT8

<1%

MobileNet-v2

(top-1 accuracy)

<1%

ResNet-50

(top-1 accuracy)

<1%

DeepLabv3

mean intersection over union)

DFQ: data free quantization 3

AdaRound is coming soon to AIMET

Post-training technique that makes INT8 quantization more accurate and INT4 quantization possible

Bitwidth Mean AP (mAP)

FP32

82.20

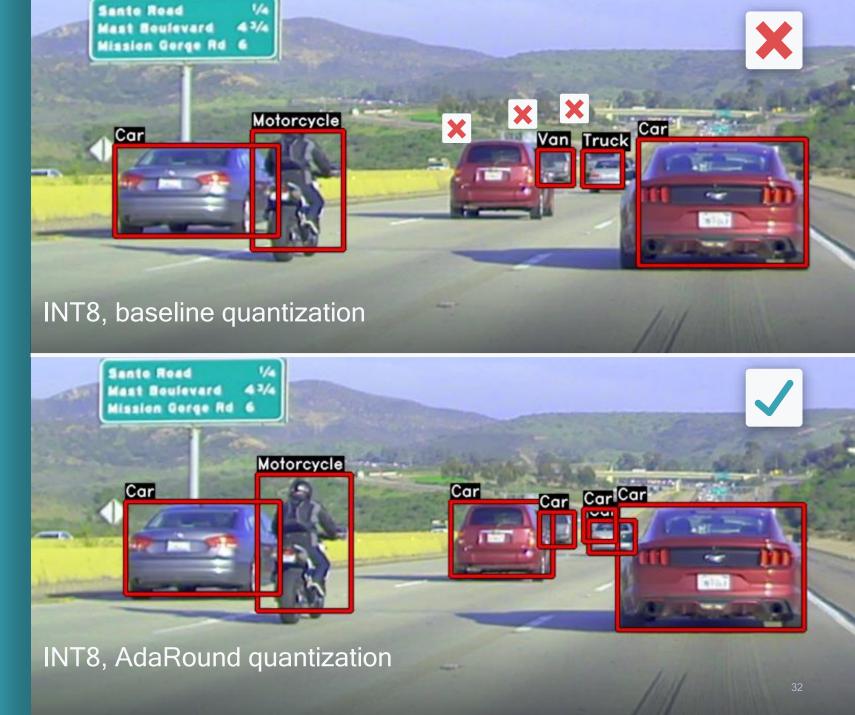
INT8 baseline quantization

49.85

INT8 AdaRound quantization

81.21

Reduction in accuracy between FP32 ad INT8 AdaRound quantization



Object detection

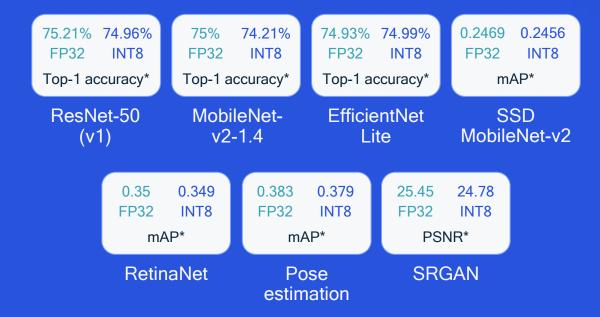
Pose estimation

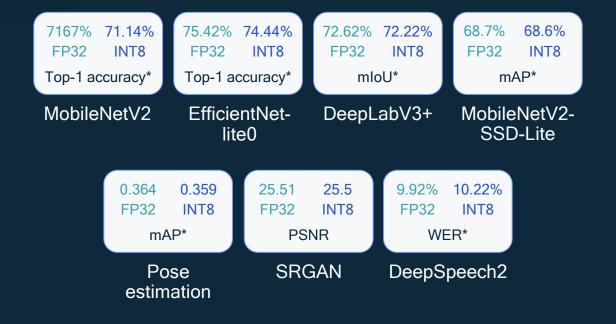
Speech recognition

AIMET Model Zoo includes popular quantized AI models

Accuracy is maintained for INT8 models – less than 1% loss*

O PyTorch





^{*:} Comparison between FP32 model and INT8 model quantized with AIMET. For further details, check out: https://github.com/quic/aimet-model-zoo/

AIMET Model Zoo models preserve accuracy

Visual difference in model accuracy is telling between AIMET and baseline quantization methods

For DeepLabv3+
semantic segmentation,
AIMET quantization
maintains accuracy,
while baseline quantization
method is inaccurate

Accurate segmentation

Inaccurate

segmentation

FP32

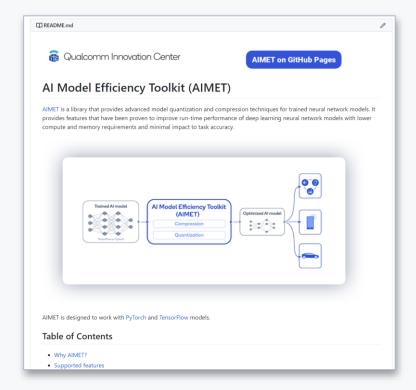
INT8 (AIMET quantization)

INT8 (Baseline quantization)

Baseline quantization: Post-training quantization using min-max based quantization grid AIMET quantization: Model fine-tuned using Quantization Aware Training in AIMET

AIMET

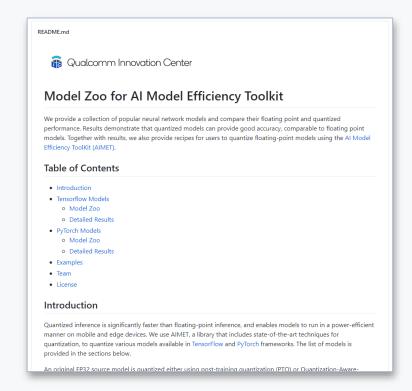
State-of-the-art quantization and compression techniques



github.com/quic/aimet

AIMET Model Zoo

Accurate pre-trained 8-bit quantized models



github.com/quic/aimet-model-zoo

Join our open-source projects

Qualcomm

Al model efficiency is crucial for making Al ubiquitous, leading to smarter devices and enhanced lives

We are conducting leading research and development in Al model efficiency while maintaining accuracy

Our open-source projects, based on this leading research, are making it possible for the industry to adopt efficient AI models at scale

Questions?

Connect with Us

www.qualcomm.com/ai

www.qualcomm.com/news/onq

@QCOMResearch

https://www.youtube.com/qualcomm?

http://www.slideshare.net/qualcommwirelessevolution

Qualcomm

Thank you

Follow us on: **f y** in **o**

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon, Adreno, and Hexagon are trademarks or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.