

Qualcomm Augmented Reality Lecture Series

The Magic of Diminished Reality

Real-time Video Inpainting

Jan Herling

Copyright 2013 Jan Herling

CV

2002-2008:

Study of computer science at RWTH Aachen University, Germany

2002-2008:

Student assistant at the Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany

• **2008-2009**:

Research assistant at FIT, Participation in European Projects: IPCity, Cospaces, EXPLOAR

since 2009:

Research assistant and PhD student at Ilmenau University of Technology, Germany

since 2012:

CTO and co-founder of fayteq GmbH

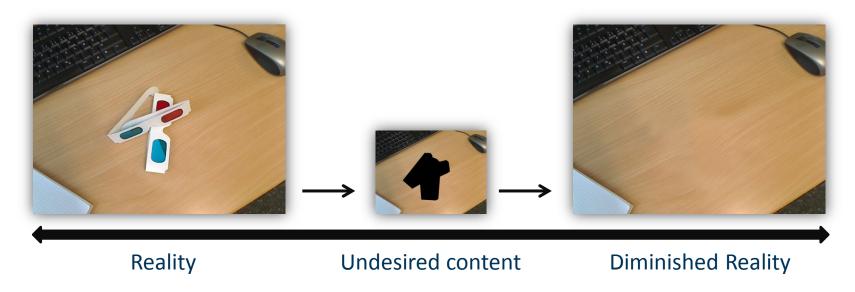
Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
- What's coming next?
- Live Demo

Augmented Reality (AR)

- Combining reality and virtual content
- Augmenting the reality with virtual content
- Real-time application

Augmented Reality (AR)


Applications

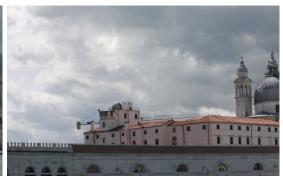
Diminished Reality (DR)

- Removing real objects from the reality
- Real-time application

Copyright 2013 Jan Herling

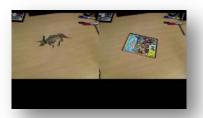
Diminished Reality (DR)

Applications



Diminished Reality (DR)

Applications



Original images: Dr. Ulrich Heide, kindly authorized by the photographer

Mediated Reality

- Combination of Augmented (or Mixed) and Diminished Reality
- Definition by Steven Mann in 1994:
 - A reality without constraints
 - Augmenting, enhancing, diminishing or altering the reality in an arbitrary way
 - Real-time application

Mediated Reality

Applications for architects

Images: Michael Lippert, kindly authorized by the author

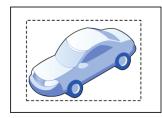
3/20/2013

Copyright 2013 Jan Herling

Mediated Reality

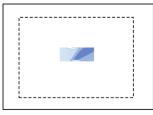
Gaming applications

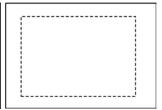
Images: Michael Lippert, kindly authorized by the author

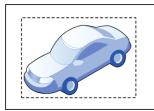


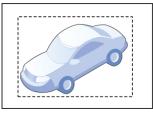
Outline

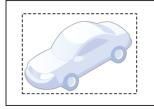
- Introduction
- Previous Research
 - Image Inpainting
 - Diminished Reality
- Real-time Video Inpainting
- What's coming next?
- Live Demo


Image Inpainting / Image Completion


Shrinking approaches



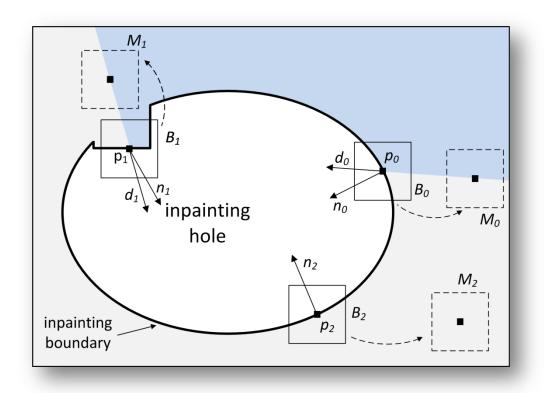




Vanishing approaches

www.tu-ilmenau.de/vwdg

Image Inpainting


- Drori et al., 2003
- Separation of source and target region
- Patch-based inpainting
- Diffusion of inpainting boundary
- Inpainting by scale and orientation invariant image patches

Copyright 2013 Jan Herling

Image Inpainting

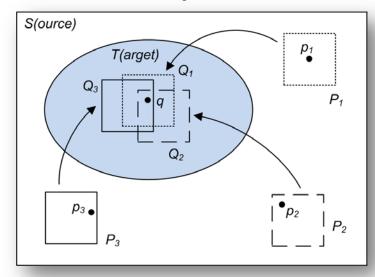
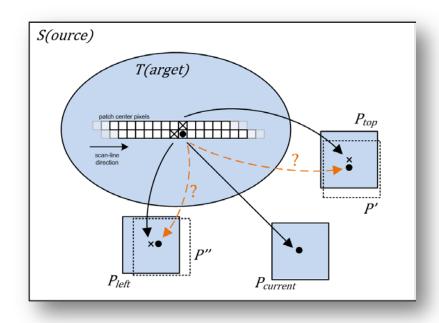

- Criminisi et al., 2003
- Patch-based inpainting
- Shrinking of the inpainting mask
- Inpainting priority mechanism

Image Inpainting


- Wexler et al., 2007
- Patch-based inpainting
- Iterative optimization approach

Copyright 2013 Jan Herling

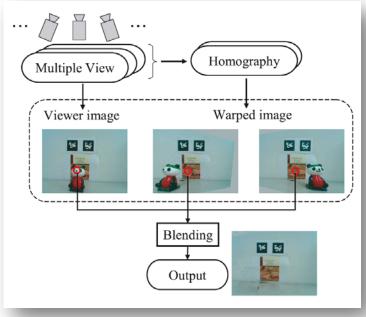
Image Inpainting

- Barnes et al., 2009
- First "interactive" image manipulation approach
- Patch-based inpainting
- Randomized optimization
- Mapping propagation

Diminished Reality

- Multi-view approaches
 - Application of several video cameras
 - Hiding of volumetric objects
 - Approx. 5 approaches
- Single-view approaches
 - One handheld camera
 - Synthesis of unknown image content
 - Often for marker hiding
 - Approx. 4 approaches

Diminished Reality, Multi-view Approaches


- Zokai et al., 2003
- Several registered reference images are applied to remove an undesired object

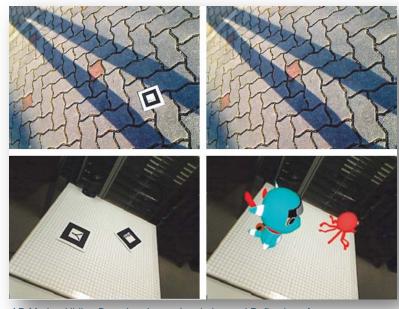
Multiview Paraperspective Projection Model for Diminished Reality, Zokai, Siavash and Esteve, Julien and Genc, Yakup and Navab, Nassir Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, 2003

Diminished Reality, Multi-view Approaches

- Enomoto and Saito, 2007
- Several hand-held live cameras are applied to remove an undesired object

Diminished Reality using Multiple Handheld Cameras, Akihito Enomoto and Hideo Saito, ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007

Diminished Reality, Single-view approaches


- Siltanen, 2006
- Marker hiding with synthesized texture
- Image synthesis by mirroring visual information

Texture generation over the marker area, Sanni Siltanen, Proceedings of the 5th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2006

Diminished Reality, Single-view approaches

- Kawai et al., 2012
- Marker hiding with synthesized (and rectified) texture
- Supporting cast shadows
- Not real-time capable image synthesis

AR Marker Hiding Based on Image Inpainting and Reflection of Illumination Changes, Norihiko Kawai, Masayoshi Yamasaki, Tomokazu Sato, Naokazu Yokoya, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2012

Page 22

Diminished Reality, Discussion

Single-view approaches

Multi-view approaches

Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
 - Lessens Learned and Objective
 - Static Image Inpainting
 - Object Selection & Tracking
 - Video Inpainting
- What's coming next?
- Live Demo

Real-time Video Inpainting

Lessens Learned

- Limitations of the previous approach
 - Usage of grayscale image information
 - Sometimes blurred image results due to realtime constraints
- Requirements for an improved approach
 - Higher image qualities (but still real-time capable)
 - Avoiding of blurring image content
 - Explicit creation of a coherent video stream

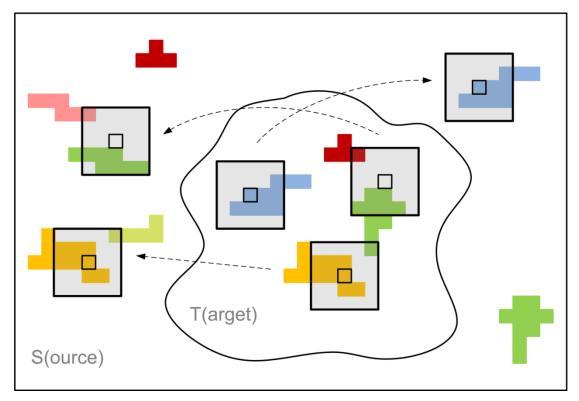
Real-time Video Inpainting

Objective

- Single hand-held camera
- No a-priori information about the environment
- Selection of arbitrary objects
- Creation of a coherence video stream
- Real-time performance for Diminished Reality

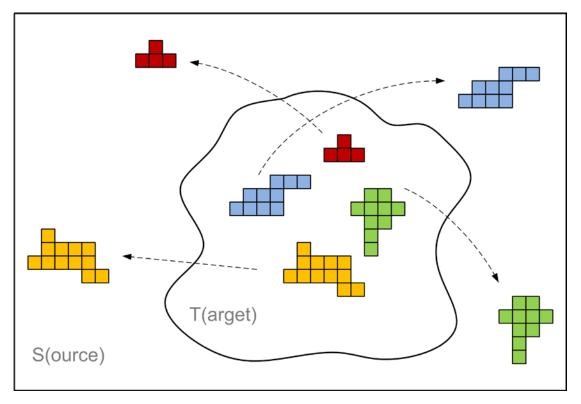
www.tu-ilmenau.de/vwda

Outline


- Introduction
- Previous Research
- Real-time Video Inpainting
 - Lessens Learned and Objective
 - Static Image Inpainting
 - Object Selection & Tracking
 - Video Inpainting
- What's coming next?
- Live Demo

Copyright 2013 Jan Herling

Approach Overview


- Separating image into T(arget) and S(ource) area
- Pixel-based image inpainting
 - Mapping f between **T**(arget) and **S**(ource) pixels
 - Copying pixels from remaining image content
- Combination of two cost constraints
 - Appearance mapping cost
 - Spatial mapping cost
- Cost minimization
 - Heuristic optimization approach
 - Multi-resolution optimization

Appearance Mapping Cost

$$cost_{appearance}(p) = \sum_{\vec{v} \in N_a} d_a[i(p+\vec{v}), i(f(p)+\vec{v})] \cdot w_a(p+\vec{v})$$

Spatial Mapping Cost

$$cost_{spatial}(p) = \sum_{\vec{v} \in N_s} d_s[f(p) + \vec{v}, f(p + \vec{v})] \cdot w_s(\vec{v})$$

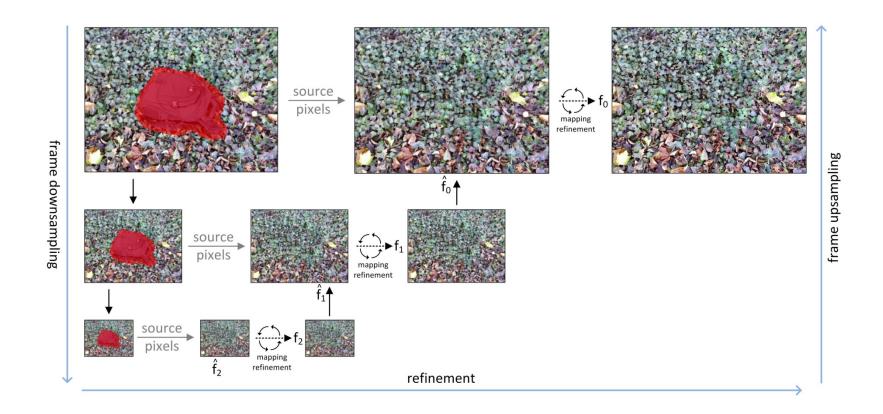
Spatial Cost Constraint

$$cost_{spatial}(p) = \sum_{\vec{v} \in N_s} d_s[f(p) + \vec{v}, f(p + \vec{v})] \cdot w_s(\vec{v})$$

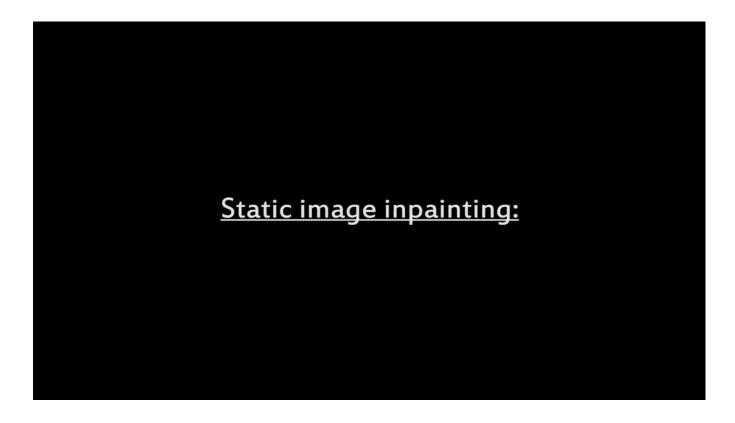
3/20/2013

Copyright 2013 Jan Herling

Pixel-Based Mapping Function


Combination of both cost constraints

$$cost_{\alpha}(p) = \alpha \cdot cost_{spatial}(p) + (1 - \alpha) \cdot cost_{appearance}(p)$$


Finding mapping function f with minimal cost

$$\min_{f} \sum_{p \in T} cost_{\alpha}(p)$$

Multi-resolution Optimization

Individual Spatial Weighting

3/20/2013

Copyright 2013 Jan Herling

Results

Results

Kwok et al, 2010, **11,500.0 ms**

Benchmark image (538x403), 58,573 inpainting pixels, Criminisi et al., 2004

Our result, **27.0 ms**

Static Image Inpainting

Results

Original image: bbroianigo / pixelio.de, (creative commons image database)

Image resolution: 1842x1266 182,860 inpainting pixels Performance: < **200 ms**

Static Image Inpainting

Properties

- Faster than our previous approach
 - Pixel-based inpainting avoids patch blending
 - Spatial cost allows faster convergence
- Resulting image quality is state-of-the-art
 - Supports textured image content
 - and supports structured image content
 - At least 100x faster than state-of-the-art approaches

Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
 - Lessens Learned and Objective
 - Static Image Inpainting
 - Object Selection & Tracking
 - Video Inpainting
- What's coming next?
- Live Demo

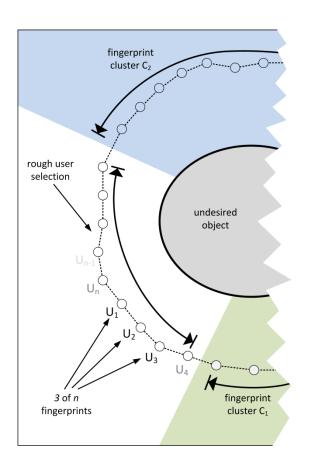
Requirements

- Application without knowledge about object or environment
- Real-time capability
- Simple user interaction
- Support for heterogeneous backgrounds

Approach

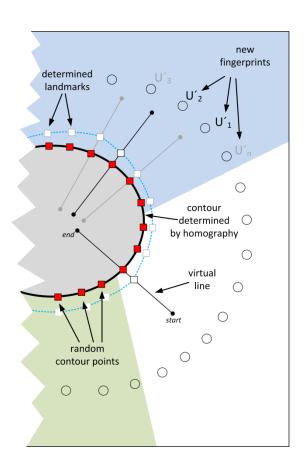
Selection

- Fingerprints store visual characteristics
- Comparing fingerprints with image content
- Determination of a binary mask


Tracking

Copyright 2013 Jan Herling

- Homography due to motion of contour points
- New contour from homography
- Contour refinement with fingerprints



Rough User Selection

- Undesired object may have heterogeneous image background
- Rough user selection
- Distribution of fingerprints
- Clustering of fingerprints
- Maximal deviation in clusters provide reference threshold
- Comparison between fingerprints and image content provides undesired object
- Pixel is undesired if more than 95% of all fingerprints reject the pixel

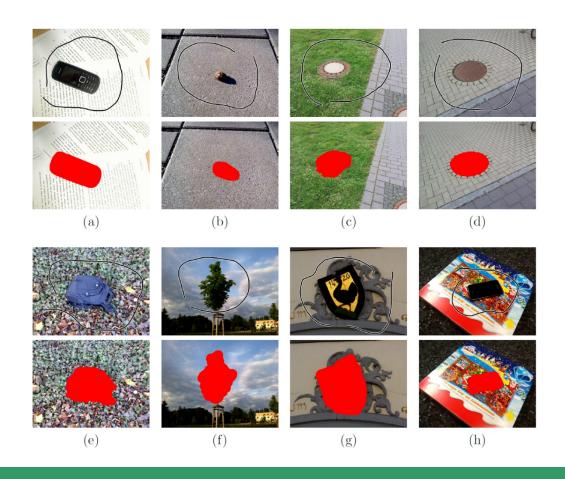
Homography Determination

- Rough contour from previous frame
- Homography determination at the object's contour
- New fingerprints (equally distributed)
- Subset of random contour points
- Virtual lines perpendicular to contour
- Determination of new landmarks
- Adjustment of the final contour

3/20/2013

Copyright 2013 Jan Herling

Results


Real-time object selection and tracking:

3/20/2013

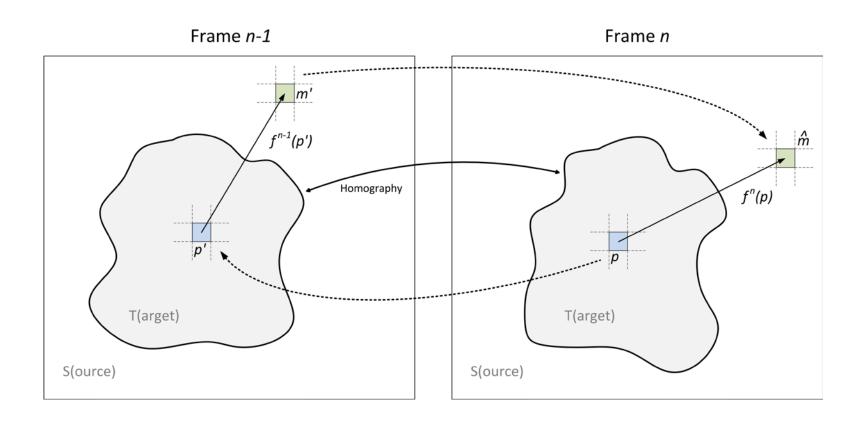
Copyright 2013 Jan Herling

Results

Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
 - Lessens Learned and Objective
 - Static Image Inpainting
 - Object Selection & Tracking
 - Video Inpainting
- What's coming next?
- Live Demo

Video Coherence



Requirements

- High image quality:
 - Image inpainting for each video frame
- High performance:
 - Information propagation from previous mapping
- Strong video coherence:
 - Application of a reference model

Information Propagation

Reference Model

- Warping of distinct key frames provide a visual model
- The model guides the inpainting process
- Extension of the appearance cost
 - Measure between model and inpainting result

$$cost'_{appearance}(p) = \sum_{\vec{v} \in N_a} d'_a [i(p + \vec{v}), r(p + \vec{v})] \cdot w'_a(p + \vec{v})$$

Performance

- Video resolution: 640x480 pixels
- Hardware: i7 mobile 2.13 GHz, 2010
- C++ Implementation running on CPU

	Object tracking	Reference model	Inpainting	Total
Removal mask: ~13K pixels, ~4.2%	4.62 ms	4.60 ms	11.16 ms	~ 50 fps
Removal mask: ~60K pixels, ~19.5%	5.71 ms	6.45 ms	53.37 ms	~ 15 fps

Results

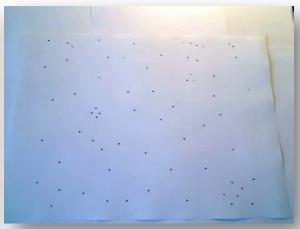
Real-time Video Inpainting

Limitations

- The approach is suitable for
 - almost planar backgrounds
 - static objects
 - non-volumetric objects
- The approach fails to
 - remove volumetric objects with unconstraint camera motion
 - dynamic objects

Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
- What's coming next?
- Live Demo



- Support of mobile devices
 - The improved algorithm seems to be fast enough for the current smartphone generation
- Extension to non-planar backgrounds
 - High efficient tracking approaches
 - SLAM-like map creation of the environment
- Support for volumetric objects
 - Prediction of camera movements
- Investigation in GPU implementation

High Efficient Tracking Approach

- The current inpainting pipeline
 - approx. 10% for tracking
 - approx. 90% for synthesis

High Efficient Tracking Approach

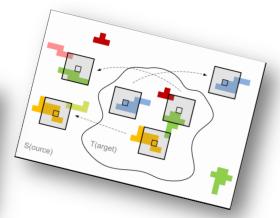
 Tracking performance with random model variation

Platform	2010 i7 Laptop 2.13 GHz, 640x480	Samsung Galaxy S2, 320x240	
Gray scale image	0.32ms	-	
Feature detection	1.59ms (600 FAST features)	7.44ms (400 FAST features)	
Pose determination	1.47ms	10.16ms	
Overall	3.37ms	17.60ms	

Visions

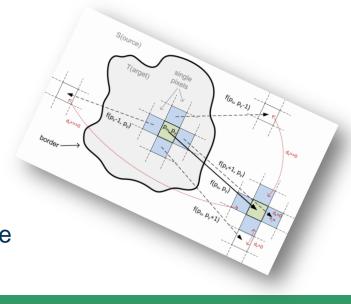
- Powerful Mediated Reality applications
 - Combination of AR and Diminished Reality
 - Novel Mediated Reality Games

– ...



Outline

- Introduction
- Previous Research
- Real-time Video Inpainting
- What's coming next?
- Live Demo



Thank you for your attention! Further questions?

Contact: jan.herling@fayteq.com jan.herling@tu-ilmenau.de

