

Leading mobile innovation for over 30 years

Digitized mobile communications

Analog to digital

Redefined computing

Desktop to smartphones

Transforming industries

Connecting virtually everything at the wireless edge

Transforming how the world connects, computes and communicates

56NR Designing a unified, more capable 5G air interface

Diverse services

Scalability to address an extreme variation of requirements

Diverse spectrum

Getting the most out of a wide array of spectrum bands/types

Diverse deployments

From macro to indoors, with support for diverse topologies such as private networks

A unifying connectivity fabric for future innovation

A platform for existing, emerging, and unforeseen connected services

Driving the 5G roadmap and ecosystem expansion

5G takes Industry 4.0 to the next level

Industry
2.0
Electrification

Industry
3.0
Digitalization

Industry 4.0 + 5G Wireless Connectivity

Compute • Security • Connectivity

On-device processing and sensing

CV and AI for autonomous robots

Edge services and data privacy

Single futureproof 5G network

Scalable capacity and reliability

Flexibility with wireless Ethernet

>\$5 Trillion¹

Global economic output in 2035 enabled by 5G in the following five categories

Manufacturing \$3,364B

Transport \$659B

Construction \$742B

Utilities \$273B

es M 3B \$

Mining \$249B

 $1.\ \hbox{``The 5G economy'' by IHS Economics / IHS Technology}\\$

Designing 5G to meet industrial IoT requirements

Unifying connectivity, dedicated network, optimized services

High reliability with low latency in challenging RF environments

Replace wireline industrial ethernet for reconfigurable factories

Spectrum to deploy private 5G network

Private 5G network for all services

Ultra Reliable Low Latency Communication (URLLC)

Time Sensitive Networking (TSN)

Dedicated licensed or shared/unlicensed spectrum

Private 5G networks for Industrial IoT use cases

Optimizing LTE for the Industrial IoT today

New opportunities with 5G NR capabilities

1. Time Sensitive Networks (TSN); 2. Mobile Broadband (MBB); 3. Extended Reality (XR)—umbrella term for Augmented Reality (AR), Virtual Reality (VR), mixed reality (MR), etc.

Optimized

Tailored for industrial applications, e.g., QoS, latency

Dedicated

Local network, easy to deploy, independently managed

Secure

Cellular grade security and keeping sensitive data local

URLLC

Ultra Reliable Low Latency Communication

99.9999% reliability

Spatial diversity is essential

- Coordinated multi-point (CoMP) provides spatial diversity with high capacity
- CoMP enabled with dense deployment of small cells with high bandwidth backhaul

Other diversity limited

- Frequency diversity does not address RF blockage/shadowing
- Time diversity limited as ultra low latency dictates timing

Ultra reliability using CoMP

CoMP expands 5G: capacity or ultra-reliability tradeoff

Capacity from spatial multiplexing

Allows multiple transmissions at the same time to multiple location without interfering

Can also be used to by multiple operators to share spectrum more efficiently

Reliability from spatial diversity

Spatial diversity can overcome radio shadowing in challenging radio environments

Key for URLLC¹ to meet 99.9999% reliability and challenging industrial IoT applications

1) Ultra reliable low latency communication

Industrial Ethernet using Time Sensitive Networking¹

Enables time synchronization of machines

Deterministic packet delivery

Reserved time slots allow co-existence with best effort traffic

Adapting 5G to support Time Sensitive Networking (TSN)

Ethernet over 5G

- Transport Ethernet frames over 5G
- Efficient transport of broadcast packets, including loop prevention
- · Automatic address discovery

Quality of Service (QoS)

- Interface between 5G control plane and TSN for QoS management
- Define new 5G QoS identifier for industrial Ethernet
- Admission control & interaction with TSN QoS framework

Time synchronization

- Time synchronization architecture
- Microsecond synchronization for all nodes
- · Broadcasting precise time by gNB

Upgrading existing industrial networks with wireless 5G

Private 5G NR networks can use different spectrum types

Providing a wide range of new services including URLLC

Licensed spectrum

Operators can allocate a portion of their spectrum in a specific area, e.g., at an industrial plant

Dedicated spectrum

In some regions, spectrum is dedicated for specific use such as 3.7 GHz in Germany for industrial

Unlicensed/shared spectrum

3GPP Rel-16 adds support for unlicensed spectrum (5G NR-U) including standalone operation; can support URLLC services in non-public locations controlled by tenant/owner

New sharing paradigms

CoMP with spatial sharing can provide significant capacity gains, predictable QoS and URLLC services

5G NR in unlicensed spectrum (NR-U) part of 3GPP R16

For wide range of deployments – also opportunity for new sharing paradigms

Boosting existing deployments by aggregating

with licensed spectrum

Expanding 5G market with new types of deployments such as industrial IoT

Significant capacity or reliability, and ability for predictable resources while sharing spectrum. Utilizes 5G NR CoMP indoor OTA test network

Unlicensed spectrum can support demanding Industrial IoT

Not possible with regular LBT¹ using random access

Controlled private environment improves latency

Synchronization in time is key for predictability

CoMP improves capacity and reliability

Frequency diversity adds more reliability

Results in random delays – demanding IIoT² apps require predictable latency

No interference from other networks, but still random delays within private network

Current regulation allows synchronized FBE³ based sharing for predictable low latency Time synchronization also allows for spatial 5G COMP – a key technology for URLLC

Frequency diversity provide reliability against rouge devices trying to access

1) Listen before talk (LBT) with load based equipment rule (LBE), such as CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance); 2) Industrial IoT; 3) Frame Based Equipment

URLLC services feasible using time synchronized NR-U in controlled environments and today's regulation rules

Key industrial IoT functionality targeted for 3GPP rel. 16

5G NR is being designed to meet Industrial IoT requirements

On-device capabilities complemented with edge cloud at wireless edge

Edge cloud

Distributed/virtualized core¹, mobile edge compute², cloud RAN, ...

On-device

Sensing, processing, security, intelligence

Central cloud

Synergistic balance

- Ultra-low latency—key to 5G use cases
- · Processing to augment on-device
- · Local content, analytics, management
- Opportunity to provide tailored value

- Privacy as data stays on device
- Immediacy—tasks on device
- · Efficient use of bandwidth
- Personalization with privacy

Wireless edge for the industrial IoT

Cloud services

Cloud analytics and virtualized core network functions

Local network at edge

RAN, core network and analytics functions

••

••

Sensitive data stays on site Quick turnaround for ultra low latency

RAN, core network and

Industrial IoT devices

Sensing, processing, security, intelligence

15.4 W-HART

Wi-Fi

BLE

Wired

Demonstrating ultra-reliable low latency capabilities (URLLC)

MWC 2018: Low latency

Sub-millisecond latency¹

Industry-first demo of PROFINET industrial Ethernet over 5G NR

Demonstrated benefits of 5G NR low latency for stringent command-and-control using factory automation equipment by Siemens

MWC 2019: Ultra-reliability

99.9999% reliability¹

Industry-first demo of ultra-reliability in a 5G NR over-the-air testbed with CoMP

Coordinated Multi-Point (CoMP) provides spatial diversity that can overcome blocking in challenging radio environments

Qualcomm Technologies, together with Nokia, were selected as the technology provider by the Hannover Messe to provide the 5G over-theair connectivity for the demonstrations in the 5G Arena.

Qualcomm

Thank you!

Follow us on: **f y** in

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.