

Qing Li, David Hartley and Brian Rosenberg

September 16, 2020

Qualcomm Technologies, Inc.

Disclaimer

Qualcomm Technologies, Inc.

Qualcomm Legal Technologies, Inc.

5775 Morehouse Drive

San Diego, CA 92121

U.S.A.

©2020 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Contents

Introduction 1

Trust Hierarchy on Snapdragon SoCs 3

Access Control Hardware Components 4

VMIDMT ... 4

XPU .. 5

SMMU .. 6

Access Control Topology 8

Target-side Access Control ... 8

Initiator-side Access Control ... 9

Comparison of Target and Initiator-side Access Control ... 11

Access Control Software Configurations 12

VMIDMT ... 12

XPU .. 12

SMMU .. 13

Access Control Use Case Example 15

Summary 17

References 18

 1

Introduction

Smartphones are one of the fastest growing technologies of the past decade. Their functionality

has expanded beyond making phone calls to encompass a range of rich applications such as

HD streaming, multiple cameras, mobile payment, social networking, and location services. At

the center of a smartphone design are one or more Systems On a Chip (SoCs), which provide

essential hardware support to enable these rich applications to execute with high performance

and long battery life.

Many smartphone SOCs have been used as the basis for development of SOCs that are used in

adjacent industries such as IOT, Automotive and XR. The need for rich applications and high

performance are crucial in these industries as well. Management of credentials, data, service

configuration mirrors that of the mobile phone. In this white paper, we talk about smartphones,

but the same principles apply to processors based on Snapdragon in adjacent industries as well.

Smartphones handle assets important to different parties such as user private data, account

credentials, service configuration, and paid content. They also interact with the outside world

through multiple interfaces such as cellular radio, Wi-Fi, and storage cards. To limit the impact if

one asset or interface is compromised, SoC components – including software images – are

organized into security domains, which should be isolated from each other.

Figure 1: Simplified SoC Block Diagram

The modern design of a mobile SoC is comprised of various components with different roles in

SoC and device functionality. Each chip maker chooses the number and types of components to

 2

be included in their individual chip design. Figure 1 shows a simplified SoC block diagram

including CPU, modem, multimedia, location (GPS), and memory components. The CPU runs

an operating system (OS), such as Android or iOS, and provides rich applications to the end

users. The modem enables cellular network and other connectivity. In addition to these various

computing elements, this example SoC has on-chip ROM and SRAM memories and is paired

with an off-chip DRAM memory, and off-chip non-volatile flash memory to store code and data.

These components communicate with each other through a system bus.

Each component can contain bus initiators or targets. Bus initiators issue transactions across the

system bus towards bus targets. Bus targets are system resources that receive and respond to

transactions from the system bus. A transaction is typically a request to read or write a system

resource such as a memory location or a hardware register, either within the SoC or in an

external component.

SoC access control hardware allows bus initiators and target system resources to be assigned to

security domains, with limited cross-domain access as needed to perform their function. Access

control (AC) operates by either allowing or blocking transactions issued by bus initiators towards

target system resources based on access control policies that are specified using security

attributes that accompany each transaction.

 3

Trust Hierarchy on Snapdragon SoCs

A Root of Trust (ROT) domain is a domain that manages its own AC policies as well as the AC

policies for subordinate domains. Snapdragon SoCs support multiple ROT domains, which can

be mutually distrusting. Different Snapdragon SoCs have different trust architectures. An

example trust hierarchy is shown in Figure 2. There are two mutually distrusting ROT domains in

this example: ARM TrustZone [1] and our distinct ROT domain. The ARM Hypervisor environment

[2] exists under the TrustZone ROT domain, and the trust model between TrustZone and

Hypervisor follows ARM design. In this example, the Hypervisor manages three security domains,

while our ROT domain does not manage any other security domains.

Security domains with higher privilege have full access to the resources owned by lower-

privileged domains. It is possible to protect a lower-privileged domain from the higher-privileged

domains using security enclaves or customized logic based on use case requirements. However,

this type of protection is outside the scope of this document.

Figure 2 An Example of Trust Hierarchy on Qualcomm

 SoCs

 4

Access Control Hardware Components

In Snapdragon SoCs, three components are used to provide access control: Virtual Master ID

Mapping Table (VMIDMT), External Protection Unit (XPU), and System Memory Management

Unit (SMMU). VMIDMT and XPU work together: VMIDMT applies security attributes

corresponding to a security domain to transactions (e.g. read/write), while XPU enforces access

control policies based on security domains. SMMU maps transactions to security domains and

enforces corresponding access control policies. We will further explain the role of each

component in this section.

VMIDMT

VMIDMT operates on the initiator-side and provides security attributes corresponding to a

security domain for the transactions issued by initiators towards the bus. A single VMIDMT can

be shared by more than one initiator. Figure 3 shows an example where two initiators share the

same VMIDMT. Each initiator generates identifier attributes that are conveyed to the input ports

of the VMIDMT. The identifier attributes are typically fixed in the hardware. VMIDMT transforms

the incoming identifier attributes into outgoing security attributes. VMIDMT supports the

generation of ROT security attributes such as the NS signal described in ARM TrustZone [1] and

QTI-defined security signals. VMIDMT also generates a VMID (Virtual Master ID) security

attribute, which is used to further differentiate security sub-domains under the same ROT

domain. All of these attributes are generated according to the instantiated hardware parameters

and configurations programmed by each ROT domain. The security attribute outputs from

VMIDMT are checked by the access control components downstream to determine whether or

not a transaction is allowed.

Figure 3: VMIDMT Example

 5

The VMIDMT supports mutually distrusting ROT domains, so each ROT domain can control the

generation of security attributes for its own domain. The generation of security attributes for each

ROT domain is solely controlled by the ROT domain itself; no ROT domain can influence the

generation of security attributes corresponding to any other ROT domains.

XPU

An XPU grants or denies access to target resources by an initiator or a group of initiators based

on security attributes from the initiators, XPU hardware instantiation parameters, and software

policies. XPU access control policies are defined at the granularity of a set of target addresses,

called a resource group, with each XPU protecting many resource groups. The target resources

within a resource group can be contiguous or fragmented in the address space depending on

the hardware parameters of the XPU. Each resource group is owned by a single security domain

and only the owning security domain can configure the access control policies for this resource

group. The access control policies determine which other security domains are granted read

and/or write access to the resource group. Figure 4 shows an example of XPU protecting two

resources.

Figure 4: XPU Example

XPU supports three modes of operation: Memory Protection Unit (MPU), Register Protection Unit

(RPU), or Address Protection Unit (APU). XPU operating modes are determined at hardware

design time, and each individual XPU operates in only one mode.

 In MPU mode, each resource group is a software programmable contiguous address

range, typically populated with memory. The start and end addresses need to be properly

aligned, in most cases on a 4 KB boundary.

 In RPU mode, each resource group is a fixed contiguous address range of the same size,

typically populated with memory mapped registers.

 6

 In APU mode, each resource group can contain fixed fragmented or contiguous address

ranges with varying sizes.

The address ranges in a resource group are determined at hardware design time for RPU and

APU modes. Each XPU has a fixed number of resource groups determined at hardware design

time. The number of resource groups constrains how many distinct access control polices can be

supported for each XPU instance.

XPUs also support mutually distrusting ROT domains, so each ROT domain can take ownership

of an individual resource group and program the desired access control policies independently of

other ROT domains and resource groups. The owning ROT domain can share resources with

another by granting the appropriate permissions.

SMMU

The SMMU is a hardware component that performs address translation and access control for

bus initiators outside of the CPU. The detailed design of an SMMU can be found in the ARM

specifications [3]. This document provides only a high-level introduction to how SMMUs are used

in access control on Snapdragon SoCs.

An SMMU can perform two stages of address translation. Stage 1, usually controlled by the CPU

OS, maps the virtual addresses visible to applications and the OS kernel to intermediate physical

addresses visible to a virtual machine. Stage 2 maps intermediate physical addresses to physical

addresses. At each stage, the address mappings – encoded in SW-managed page tables – can

leave some target address ranges unmapped and restrict the transaction types permitted on

others, defining the access control policy to physical address space. This allows a kernel driver in

a virtual machine, for example, to allocate a memory buffer, provide a DMA bus initiator with its

virtual address range, and rely on the SMMU to translate DMA transactions to the correct

physical address ranges for the virtual machine. An SMMU can also ensure that SW does not

use DMA bus initiators to circumvent the access control policy imposed on it. Transactions

targeting an address not mapped or permitted in the page tables will trigger a bus fault.

Because multiple bus initiators can forward transactions to the same SMMU concurrently, the

SMMU supports multiple context banks in parallel, each with its own page tables. An SMMU

directs incoming transactions to the correct context bank using signals generated by each

 7

initiator, including a stream ID and security state determination (SSD) value. Trusted software

configures the SMMU to map these transaction values to a context bank and, hence, to the

corresponding page tables. Simple initiators have a single hard-wired stream ID and SSD value,

and can be mapped to only one context bank at any time. More complex initiators may have

internal logical channels that generate distinct stream ID and SSD values, so that each channel

can be mapped to a different SMMU context bank and operate in a different security domain.

SMMU context banks may be configured as secure or not secure. Only TrustZone can map SSD

values to secure context banks, and only page tables associated with secure context banks can

map virtual addresses to secure physical addresses. In Snapdragon SoCs, the Hypervisor

controls both the mapping from non-secure stream IDs to context banks and stage 2 context

bank configurations. The CPU OS is permitted to configure only stage 1 context banks for its own

use cases. The CPU OS is not able to change context bank mappings or modify stage 2 page

tables to access resources not granted by Hypervisor. Similarly, the Hypervisor is not able to re-

configure SMMU context banks or modify secure page tables to access TrustZone-owned

resources.

 8

Access Control Topology

Access control topology refers to the types and inter-connection of access control components.

The choice of initiator-side (permission checked before a transaction is issued to the system bus)

or target-side (permission checked closer to the resource being requested) can have important

implications for SoC area, power, and performance as well as security.

Target-side Access Control

In target-side access control, a VMIDMT is used to generate security attributes and permission

checking is conducted by an XPU. SMMU is not used in this topology. Each request from an

initiator goes through a VMIDMT which generates security attributes on the bus. The security

attributes are propagated to the target resources and the XPU in front of the resources grants or

denies the transaction based on the security attributes from the initiator, destination address,

request properties, and XPU policies. A single VMIDMT supports the generation of security

attributes for multiple initiators. A target resource can have a dedicated XPU or several target

resources can share the same XPU. A target resource that requires no protection does not need

to be put behind an XPU. Similarly, if an initiator does not need to access any protected

resources, a VMIDMT is not required in the path from the initiator to any target resources. A

transaction from this initiator to any protected target resource will be rejected.

 9

Figure 5: Target-side Access Control

Figure 5 shows an example of target-side access control topology. There are three initiators and

three target resources in this example. Initiators 1 and 2 connect to VMIDMT 1, while Initiator 3 is

the only initiator connected to VMIDMT 2. On the target side, Resource 1 has a dedicated XPU,

and Resources 2 and 3 share the same XPU. When Initiator 1 issues a transaction to access

Resource 3, security attributes for Initiator 1 will be generated by VMIDMT 1, and these signals

will propagate to the system bus. The system bus decodes the destination address and routes

the transaction to XPU 2. XPU 2 checks the security attributes and relevant permissions and

grants or denies the transaction. VMIDMT 2 and XPU 1 are not in the path from Initiator 1 to

Resource 3 so they are not involved in this transaction.

Initiator-side Access Control

In initiator-side access control, permissions are checked close to the issuing initiator. SMMUs can

provide sufficient access control if all SoC components are ARM compliant and every initiator

has an SMMU in front of it. However, Snapdragon SoCs include proprietary security attributes

which are not supported by SMMU. Further, there are cases where transactions between some

initiator-target pairs do not go through an SMMU due to various design considerations, such as

performance impact or area cost. To overcome these challenges, the initiator-side access control

design makes use of all three access control components, i.e. XPU, VMIDMT and SMMU. As a

 10

result, permissions for some resources may be checked close to the target even in a primarily

initiator-side design.

Every transaction from an initiator to a protected target resource goes through at least one

access control component which performs permission checking. It could be an SMMU or MPU

close to the initiator, or an XPU close to the target. When an MPU is used to perform permission

checking close to the initiator, we call it an Initiator-side MPU (IS-MPU). The protected target

address range for the IS-MPU is the entire range of SoC addresses that can be generated by the

initiator. Permissions for a single transaction may also be checked by more than one access

control component along the path from an initiator to a target.

Figure 6: Initiator-side Access Control

An example of initiator-side access control design is shown in Figure 6. There are five initiators

and four protected target resources in this example. Transactions from Initiators 1 and 2 go

through the same SMMU 1 before reaching the system bus. Initiator 3 is the only initiator

connected to SMMU 2. For Initiator 4, there is no SMMU in the path to the System bus and a

VMIDMT is used to generate the security attributes to be checked by the XPUs close to the

targets. An initiator-side MPU is used to perform permission checking for Initiator 5, and there is

 11

no VMIDMT or SMMU in the path from Initiator 5 to the target resources. This design is used in

cases where the security attributes of the initiator are known at hardware design time, so they

are generated directly by the initiator. On the target-side, there are XPUs in front of Resources 1,

2, 3 and 4.

If Initiator 3 issues a transaction to Resource 1, SMMU 2 performs address translation and access

control. If the SMMU allows Initiator 3 to access Resource 1, the security attributes along with

other transaction properties will propagate to the system bus, which does address decoding and

forwards the transaction towards Resource 1. The XPU 1 in front of Resource 1 performs a

separate permission check and allows or rejects the transaction accordingly.

Comparison of Target and Initiator-side Access Control

Initiator-side access control topology is commonly used on newer Snapdragon SoCs. This

topology offers more flexibility and scalability to handle new use cases requiring fragmented

ownership of, and access to, resources. Target-side topology is more constrained because the

XPU instantiation parameters, such as the number of resource groups, are determined at

hardware design time. Further, initiator-side access control is more aligned with trends in the

ARM ecosystem and industry more broadly.

 12

Access Control Software Configurations

In this section, we will show examples of VMIDMT, XPU, and SMMU software configurations.

The access control configurations can be programmed statically during ROT domain software

initialization or dynamically when switching from one use case to another.

VMIDMT

An example VMIDMT configuration for a shared Direct Memory Access (DMA) engine is shown

in Table 1. There are two channels in this DMA, and the channel identifier serves as the initiator

identifier to the VMIDMT. The DMA is shared by two domains and each domain owns one

channel. The CPU OS uses channel 0, so the VMID output from channel 0 denotes CPU OS.

The CPU OS is in the non-secure domain. TrustZone owns channel 1 so channel 1 outputs the

secure signal.

TrustZone configures the VMID and secure signal generation for all channels. It is possible for

TrustZone to delegate the configuration of VMID generation to a trusted domain. This delegation

can be configured independently for each individual VMIDMT. TrustZone cannot delegate

control of how the secure signal is generated to other domains.

Table 1: VMIDMT Configuration Example

Initiator Identifier VMID Output Secure Signal

0 CPU OS Non-secure

1 TrustZone Secure

XPU

Table 2 shows an example of configurations for an MPU with 2 resource groups. This MPU

protects a memory of size 96KB accessed through memory addresses 0x1000_0000 to

0x1001_8000. The start and end address of each MPU resource group must be aligned on a 4K

boundary. In this example, TrustZone owns both resource groups. TrustZone programs the start

 13

and end addresses, and which initiators can read or write these resource groups. Access to each

resource group can be restricted to a single domain or shared among multiple domains.

Table 2: XPU Configuration Example

Resource

Group

Start

Address

(inclusive)

End

Address

(exclusive)

Size Owner Read

Permission

Write

Permission

0 0x1000_0000 0x1001_0000 64KB TrustZone TrustZone

CPU OS

TrustZone

1 0x1001_0000 0x1001_8000 32KB TrustZone

CPU OS

CPU OS

SMMU

Table 1 gives an example SMMU configuration for SMMU1 in Figure 6.

Table 3: SMMU Configuration Example

Stream ID /

SSD

Stage 1

Context Bank

Stage 2

Context Bank

Stage 1

ASID

Stage 2

VMID

Secure Signal

0x0000 7 None TrustZone None Secure

0x0001 None 4 None Audio Non-secure

0x0100 0 5 Process 1 CPU OS Non-secure

SMMU1 has 8 context banks (0 to 7) that are used to direct address translation and access

control for incoming transactions based on their Stream ID and SSD attributes. For simplicity, the

Stream ID signals are also connected as SSD signals in this example.

Initiator1 has two logical channels, 0 and 1, which generate Stream IDs 0x0000 and 0x0001.

Initiator 2 generates Stream ID 0x0100. These are assigned to different domains in the SMMU1

configuration below as follows.

 14

Channel 0 is claimed by TrustZone for itself. TrustZone configures SSD 0x0000 to generate

secure outgoing transactions, configures context bank 7 as a secure Stage 1 context bank (i.e.,

further configuration is possible only from TrustZone), and maps Stream ID 0x0000 to context

bank 7. TrustZone may attach page tables to context bank 7 to govern address translation and

access control. Secure transactions use only single-stage translation, so channel 0 has no

associated Stage 2 context bank.

TrustZone configures the remaining SSD values to generate non-secure outgoing transactions,

and delegates configuration of the remaining context banks to the Hypervisor.

Channel 1 is assigned to the audio system. The Hypervisor maps Stream ID 0x0001 to context

bank 4 and configures this for Stage 2 translation, attaching the Audio domain page tables. In

this example, the Audio domain uses Stage-2-only address translation, so the Hypervisor does

not assign a Stage 1 context bank to channel 1.

Initiator 2 is assigned to a CPU process. The Hypervisor configures context bank 0 for Stage 1

translation, connects it to context bank 5 for Stage 2 translation, and attaches the CPU OS

stage 2 page tables. The Hypervisor delegates configuration of Stage 1 translation to the CPU

OS. The Hypervisor leaves the remaining context banks 1, 2, 3 and 6 as inactive. Note that the

Hypervisor delegates only specific Stream IDs and context banks for configuration by the CPU

OS.

 15

Access Control Use Case Example

In this section, we will step through an example access control use case – firmware

authentication. The purpose of firmware authentication is to prevent unauthorized code from

being executed on the device. The scenario is that TrustZone does not have direct access to the

external flash drive and must rely on the CPU OS to load the Video CPU firmware from external

storage to DRAM. However, the CPU OS is not trusted by Video CPU and, therefore, should not

have access to Video firmware memory while the Video CPU is running. Figure 7 shows the

relevant software flow.

Figure 7: Firmware Authentication Software Flow

1. The CPU OS loads the video firmware from external storage to DRAM. At this point, the

CPU OS has full access to the DRAM memory holding the Video firmware and can

modify it at will.

2. The CPU OS calls TrustZone to perform firmware authentication, passing the address

and size of the loaded Video firmware.

 16

3. TrustZone validates the address range to ensure there is no overlapping with other use

cases. An error is returned to the CPU OS if verification fails.

4. TrustZone programs one DRAM MPU resource group to protect Video firmware address

range, granting read and write permission for this resource group to Video CPU only. After

this step, the CPU OS is no longer able to read or modify the Video firmware.

5. TrustZone authenticates the firmware.

6. If the authentication passes, TrustZone releases Video CPU from reset.

7. Video CPU starts executing.

If the authentication fails, the MPU resource group for Video CPU is released and an error is

returned to the CPU OS.

The access control protection provided in step 4 is essential to the firmware authentication use

case. If the Video firmware region remained open, any domain could modify the Video code in

DRAM, defeating the goal of firmware authentication. It is also worth noting that the Video CPU

reset control registers must also be protected. If not, any domain could release Video CPU from

reset and let it run arbitrary code.

 17

Summary

Access control is one of the most important building blocks of SoC security architecture. We

have provided an overview of how access control works on Snapdragon SoCs. The three access

control hardware components –VMIDMT, XPU, and SMMU – are programmed by software, and

the resulting policies are enforced by the hardware. These components can be placed in a

target-side or initiator-side topology. Older SoCs tended toward target-side access control

topology while more modern SoCs use initiator-side topology. Finally, we illustrated the critical

role of access control in secure use cases through the example of firmware authentication.

 18

References

[1] "ARM TrustZone," [Online]. Available: https://developer.arm.com/ip-products/security-ip/TrustZone.

[2] "ARM Virtualization," [Online]. Available: https://developer.arm.com/docs/100942/latest/aarch64-
virtualization.

[3] "ARM System Memory Management Units," [Online]. Available: https://developer.arm.com/ip-
products/system-ip/system-controllers/system-memory-management-unit.

