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Introduction 

Smartphones are one of the fastest growing technologies of the past decade. Their functionality 

has expanded beyond making phone calls to encompass a range of rich applications such as 

HD streaming, multiple cameras, mobile payment, social networking, and location services. At 

the center of a smartphone design are one or more Systems On a Chip (SoCs), which provide 

essential hardware support to enable these rich applications to execute with high performance 

and long battery life.  

Many smartphone SOCs have been used as the basis for development of SOCs that are used in 

adjacent industries such as IOT, Automotive and XR.  The need for rich applications and high 

performance are crucial in these industries as well.  Management of credentials, data, service 

configuration mirrors that of the mobile phone.  In this white paper, we talk about smartphones, 

but the same principles apply to processors based on Snapdragon in adjacent industries as well.   

Smartphones handle assets important to different parties such as user private data, account 

credentials, service configuration, and paid content. They also interact with the outside world 

through multiple interfaces such as cellular radio, Wi-Fi, and storage cards. To limit the impact if 

one asset or interface is compromised, SoC components – including software images – are 

organized into security domains, which should be isolated from each other.   

 

Figure 1: Simplified SoC Block Diagram 

The modern design of a mobile SoC is comprised of various components with different roles in 

SoC and device functionality. Each chip maker chooses the number and types of components to 
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be included in their individual chip design. Figure 1 shows a simplified SoC block diagram 

including CPU, modem, multimedia, location (GPS), and memory components. The CPU runs 

an operating system (OS), such as Android or iOS, and provides rich applications to the end 

users. The modem enables cellular network and other connectivity. In addition to these various 

computing elements, this example SoC has on-chip ROM and SRAM memories and is paired 

with an off-chip DRAM memory, and off-chip non-volatile flash memory to store code and data. 

These components communicate with each other through a system bus.  

Each component can contain bus initiators or targets. Bus initiators issue transactions across the 

system bus towards bus targets. Bus targets are system resources that receive and respond to 

transactions from the system bus. A transaction is typically a request to read or write a system 

resource such as a memory location or a hardware register, either within the SoC or in an 

external component.  

SoC access control hardware allows bus initiators and target system resources to be assigned to 

security domains, with limited cross-domain access as needed to perform their function. Access 

control (AC) operates by either allowing or blocking transactions issued by bus initiators towards 

target system resources based on access control policies that are specified using security 

attributes that accompany each transaction. 
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Trust Hierarchy on Snapdragon SoCs 

A Root of Trust (ROT) domain is a domain that manages its own AC policies as well as the AC 

policies for subordinate domains. Snapdragon SoCs support multiple ROT domains, which can 

be mutually distrusting. Different Snapdragon SoCs have different trust architectures. An 

example trust hierarchy is shown in Figure 2. There are two mutually distrusting ROT domains in 

this example: ARM TrustZone [1] and our distinct ROT domain. The ARM Hypervisor environment 

[2] exists under the TrustZone ROT domain, and the trust model between TrustZone and 

Hypervisor follows ARM design. In this example, the Hypervisor manages three security domains, 

while our ROT domain does not manage any other security domains. 

Security domains with higher privilege have full access to the resources owned by lower-

privileged domains. It is possible to protect a lower-privileged domain from the higher-privileged 

domains using security enclaves or customized logic based on use case requirements. However, 

this type of protection is outside the scope of this document. 

 

Figure 2 An Example of Trust Hierarchy on Qualcomm 

 SoCs 
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Access Control Hardware Components 

In Snapdragon SoCs, three components are used to provide access control: Virtual Master ID 

Mapping Table (VMIDMT), External Protection Unit (XPU), and System Memory Management 

Unit (SMMU). VMIDMT and XPU work together: VMIDMT applies security attributes 

corresponding to a security domain to transactions (e.g. read/write), while XPU enforces access 

control policies based on security domains. SMMU maps transactions to security domains and 

enforces corresponding access control policies. We will further explain the role of each 

component in this section. 

VMIDMT 

VMIDMT operates on the initiator-side and provides security attributes corresponding to a 

security domain for the transactions issued by initiators towards the bus. A single VMIDMT can 

be shared by more than one initiator. Figure 3 shows an example where two initiators share the 

same VMIDMT. Each initiator generates identifier attributes that are conveyed to the input ports 

of the VMIDMT. The identifier attributes are typically fixed in the hardware. VMIDMT transforms 

the incoming identifier attributes into outgoing security attributes. VMIDMT supports the 

generation of ROT security attributes such as the NS signal described in ARM TrustZone [1] and 

QTI-defined security signals. VMIDMT also generates a VMID (Virtual Master ID) security 

attribute, which is used to further differentiate security sub-domains under the same ROT 

domain. All of these attributes are generated according to the instantiated hardware parameters 

and configurations programmed by each ROT domain. The security attribute outputs from 

VMIDMT are checked by the access control components downstream to determine whether or 

not a transaction is allowed. 

 

Figure 3: VMIDMT Example 
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The VMIDMT supports mutually distrusting ROT domains, so each ROT domain can control the 

generation of security attributes for its own domain. The generation of security attributes for each 

ROT domain is solely controlled by the ROT domain itself; no ROT domain can influence the 

generation of security attributes corresponding to any other ROT domains. 

XPU 

An XPU grants or denies access to target resources by an initiator or a group of initiators based 

on security attributes from the initiators, XPU hardware instantiation parameters, and software 

policies. XPU access control policies are defined at the granularity of a set of target addresses, 

called a resource group, with each XPU protecting many resource groups. The target resources 

within a resource group can be contiguous or fragmented in the address space depending on 

the hardware parameters of the XPU. Each resource group is owned by a single security domain 

and only the owning security domain can configure the access control policies for this resource 

group. The access control policies determine which other security domains are granted read 

and/or write access to the resource group. Figure 4 shows an example of XPU protecting two 

resources. 

 

Figure 4: XPU Example 

XPU supports three modes of operation: Memory Protection Unit (MPU), Register Protection Unit 

(RPU), or Address Protection Unit (APU). XPU operating modes are determined at hardware 

design time, and each individual XPU operates in only one mode.  

 In MPU mode, each resource group is a software programmable contiguous address 

range, typically populated with memory. The start and end addresses need to be properly 

aligned, in most cases on a 4 KB boundary.  

 In RPU mode, each resource group is a fixed contiguous address range of the same size, 

typically populated with memory mapped registers.  
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 In APU mode, each resource group can contain fixed fragmented or contiguous address 

ranges with varying sizes.  

The address ranges in a resource group are determined at hardware design time for RPU and 

APU modes. Each XPU has a fixed number of resource groups determined at hardware design 

time. The number of resource groups constrains how many distinct access control polices can be 

supported for each XPU instance.  

XPUs also support mutually distrusting ROT domains, so each ROT domain can take ownership 

of an individual resource group and program the desired access control policies independently of 

other ROT domains and resource groups. The owning ROT domain can share resources with 

another by granting the appropriate permissions.  

SMMU 

The SMMU is a hardware component that performs address translation and access control for 

bus initiators outside of the CPU. The detailed design of an SMMU can be found in the ARM 

specifications [3]. This document provides only a high-level introduction to how SMMUs are used 

in access control on Snapdragon SoCs. 

An SMMU can perform two stages of address translation. Stage 1, usually controlled by the CPU 

OS, maps the virtual addresses visible to applications and the OS kernel to intermediate physical 

addresses visible to a virtual machine. Stage 2 maps intermediate physical addresses to physical 

addresses. At each stage, the address mappings – encoded in SW-managed page tables – can 

leave some target address ranges unmapped and restrict the transaction types permitted on 

others, defining the access control policy to physical address space. This allows a kernel driver in 

a virtual machine, for example, to allocate a memory buffer, provide a DMA bus initiator with its 

virtual address range, and rely on the SMMU to translate DMA transactions to the correct 

physical address ranges for the virtual machine. An SMMU can also ensure that SW does not 

use DMA bus initiators to circumvent the access control policy imposed on it. Transactions 

targeting an address not mapped or permitted in the page tables will trigger a bus fault. 

Because multiple bus initiators can forward transactions to the same SMMU concurrently, the 

SMMU supports multiple context banks in parallel, each with its own page tables. An SMMU 

directs incoming transactions to the correct context bank using signals generated by each 
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initiator, including a stream ID and security state determination (SSD) value. Trusted software 

configures the SMMU to map these transaction values to a context bank and, hence, to the 

corresponding page tables. Simple initiators have a single hard-wired stream ID and SSD value, 

and can be mapped to only one context bank at any time. More complex initiators may have 

internal logical channels that generate distinct stream ID and SSD values, so that each channel 

can be mapped to a different SMMU context bank and operate in a different security domain. 

SMMU context banks may be configured as secure or not secure. Only TrustZone can map SSD 

values to secure context banks, and only page tables associated with secure context banks can 

map virtual addresses to secure physical addresses. In Snapdragon SoCs, the Hypervisor 

controls both the mapping from non-secure stream IDs to context banks and stage 2 context 

bank configurations. The CPU OS is permitted to configure only stage 1 context banks for its own 

use cases. The CPU OS is not able to change context bank mappings or modify stage 2 page 

tables to access resources not granted by Hypervisor. Similarly, the Hypervisor is not able to re-

configure SMMU context banks or modify secure page tables to access TrustZone-owned 

resources.  
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Access Control Topology 

Access control topology refers to the types and inter-connection of access control components. 

The choice of initiator-side (permission checked before a transaction is issued to the system bus) 

or target-side (permission checked closer to the resource being requested) can have important 

implications for SoC area, power, and performance as well as security. 

Target-side Access Control 

In target-side access control, a VMIDMT is used to generate security attributes and permission 

checking is conducted by an XPU. SMMU is not used in this topology. Each request from an 

initiator goes through a VMIDMT which generates security attributes on the bus. The security 

attributes are propagated to the target resources and the XPU in front of the resources grants or 

denies the transaction based on the security attributes from the initiator, destination address, 

request properties, and XPU policies. A single VMIDMT supports the generation of security 

attributes for multiple initiators. A target resource can have a dedicated XPU or several target 

resources can share the same XPU. A target resource that requires no protection does not need 

to be put behind an XPU. Similarly, if an initiator does not need to access any protected 

resources, a VMIDMT is not required in the path from the initiator to any target resources. A 

transaction from this initiator to any protected target resource will be rejected. 
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Figure 5: Target-side Access Control 

Figure 5 shows an example of target-side access control topology. There are three initiators and 

three target resources in this example. Initiators 1 and 2 connect to VMIDMT 1, while Initiator 3 is 

the only initiator connected to VMIDMT 2. On the target side, Resource 1 has a dedicated XPU, 

and Resources 2 and 3 share the same XPU. When Initiator 1 issues a transaction to access 

Resource 3, security attributes for Initiator 1 will be generated by VMIDMT 1, and these signals 

will propagate to the system bus. The system bus decodes the destination address and routes 

the transaction to XPU 2. XPU 2 checks the security attributes and relevant permissions and 

grants or denies the transaction. VMIDMT 2 and XPU 1 are not in the path from Initiator 1 to 

Resource 3 so they are not involved in this transaction.  

Initiator-side Access Control 

In initiator-side access control, permissions are checked close to the issuing initiator. SMMUs can 

provide sufficient access control if all SoC components are ARM compliant and every initiator 

has an SMMU in front of it. However, Snapdragon SoCs include proprietary security attributes 

which are not supported by SMMU. Further, there are cases where transactions between some 

initiator-target pairs do not go through an SMMU due to various design considerations, such as 

performance impact or area cost. To overcome these challenges, the initiator-side access control 

design makes use of all three access control components, i.e. XPU, VMIDMT and SMMU. As a 
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result, permissions for some resources may be checked close to the target even in a primarily 

initiator-side design.  

Every transaction from an initiator to a protected target resource goes through at least one 

access control component which performs permission checking. It could be an SMMU or MPU 

close to the initiator, or an XPU close to the target. When an MPU is used to perform permission 

checking close to the initiator, we call it an Initiator-side MPU (IS-MPU). The protected target 

address range for the IS-MPU is the entire range of SoC addresses that can be generated by the 

initiator. Permissions for a single transaction may also be checked by more than one access 

control component along the path from an initiator to a target.   

 

Figure 6: Initiator-side Access Control 

An example of initiator-side access control design is shown in Figure 6. There are five initiators 

and four protected target resources in this example. Transactions from Initiators 1 and 2 go 

through the same SMMU 1 before reaching the system bus. Initiator 3 is the only initiator 

connected to SMMU 2. For Initiator 4, there is no SMMU in the path to the System bus and a 

VMIDMT is used to generate the security attributes to be checked by the XPUs close to the 

targets. An initiator-side MPU is used to perform permission checking for Initiator 5, and there is 
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no VMIDMT or SMMU in the path from Initiator 5 to the target resources. This design is used in 

cases where the security attributes of the initiator are known at hardware design time, so they 

are generated directly by the initiator. On the target-side, there are XPUs in front of Resources 1, 

2, 3 and 4.  

If Initiator 3 issues a transaction to Resource 1, SMMU 2 performs address translation and access 

control. If the SMMU allows Initiator 3 to access Resource 1, the security attributes along with 

other transaction properties will propagate to the system bus, which does address decoding and 

forwards the transaction towards Resource 1. The XPU 1 in front of Resource 1 performs a 

separate permission check and allows or rejects the transaction accordingly.  

Comparison of Target and Initiator-side Access Control 

Initiator-side access control topology is commonly used on newer Snapdragon SoCs. This 

topology offers more flexibility and scalability to handle new use cases requiring fragmented 

ownership of, and access to, resources. Target-side topology is more constrained because the 

XPU instantiation parameters, such as the number of resource groups, are determined at 

hardware design time. Further, initiator-side access control is more aligned with trends in the 

ARM ecosystem and industry more broadly. 
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Access Control Software Configurations 

In this section, we will show examples of VMIDMT, XPU, and SMMU software configurations. 

The access control configurations can be programmed statically during ROT domain software 

initialization or dynamically when switching from one use case to another.  

VMIDMT 

An example VMIDMT configuration for a shared Direct Memory Access (DMA) engine is shown 

in Table 1. There are two channels in this DMA, and the channel identifier serves as the initiator 

identifier to the VMIDMT. The DMA is shared by two domains and each domain owns one 

channel. The CPU OS uses channel 0, so the VMID output from channel 0 denotes CPU OS. 

The CPU OS is in the non-secure domain. TrustZone owns channel 1 so channel 1 outputs the 

secure signal. 

TrustZone configures the VMID and secure signal generation for all channels. It is possible for 

TrustZone to delegate the configuration of VMID generation to a trusted domain. This delegation 

can be configured independently for each individual VMIDMT. TrustZone cannot delegate 

control of how the secure signal is generated to other domains.  

Table 1: VMIDMT Configuration Example 

Initiator Identifier  VMID Output  Secure Signal  

0 CPU OS Non-secure 

1 TrustZone Secure 

 

XPU 

Table 2 shows an example of configurations for an MPU with 2 resource groups. This MPU 

protects a memory of size 96KB accessed through memory addresses 0x1000_0000 to 

0x1001_8000. The start and end address of each MPU resource group must be aligned on a 4K 

boundary. In this example, TrustZone owns both resource groups. TrustZone programs the start 
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and end addresses, and which initiators can read or write these resource groups. Access to each 

resource group can be restricted to a single domain or shared among multiple domains.  

Table 2: XPU Configuration Example 

Resource 

Group 

Start 

Address 

(inclusive) 

End 

Address 

(exclusive) 

Size Owner Read 

Permission 

Write 

Permission 

0 0x1000_0000 0x1001_0000 64KB TrustZone TrustZone 

CPU OS 

TrustZone 

1 0x1001_0000 0x1001_8000 32KB TrustZone  

CPU OS 

CPU OS 

SMMU 

Table 1 gives an example SMMU configuration for SMMU1 in Figure 6.   

Table 3: SMMU Configuration Example 

Stream ID / 

SSD 

Stage 1 

Context Bank  

Stage 2 

Context Bank 

Stage 1 

ASID 

Stage 2 

VMID 

Secure Signal 

0x0000 7 None TrustZone None Secure 

0x0001 None 4 None Audio Non-secure 

0x0100 0 5 Process 1 CPU OS Non-secure 

 

SMMU1 has 8 context banks (0 to 7) that are used to direct address translation and access 

control for incoming transactions based on their Stream ID and SSD attributes. For simplicity, the 

Stream ID signals are also connected as SSD signals in this example. 

Initiator1 has two logical channels, 0 and 1, which generate Stream IDs 0x0000 and 0x0001. 

Initiator 2 generates Stream ID 0x0100. These are assigned to different domains in the SMMU1 

configuration below as follows. 
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Channel 0 is claimed by TrustZone for itself. TrustZone configures SSD 0x0000 to generate 

secure outgoing transactions, configures context bank 7 as a secure Stage 1 context bank (i.e., 

further configuration is possible only from TrustZone), and maps Stream ID 0x0000 to context 

bank 7. TrustZone may attach page tables to context bank 7 to govern address translation and 

access control. Secure transactions use only single-stage translation, so channel 0 has no 

associated Stage 2 context bank. 

TrustZone configures the remaining SSD values to generate non-secure outgoing transactions, 

and delegates configuration of the remaining context banks to the Hypervisor. 

Channel 1 is assigned to the audio system. The Hypervisor maps Stream ID 0x0001 to context 

bank 4 and configures this for Stage 2 translation, attaching the Audio domain page tables. In 

this example, the Audio domain uses Stage-2-only address translation, so the Hypervisor does 

not assign a Stage 1 context bank to channel 1. 

Initiator 2 is assigned to a CPU process. The Hypervisor configures context bank 0 for Stage 1 

translation, connects it to context bank 5 for Stage 2 translation, and attaches the CPU OS 

stage 2 page tables. The Hypervisor delegates configuration of Stage 1 translation to the CPU 

OS. The Hypervisor leaves the remaining context banks 1, 2, 3 and 6 as inactive. Note that the 

Hypervisor delegates only specific Stream IDs and context banks for configuration by the CPU 

OS.  
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Access Control Use Case Example 

In this section, we will step through an example access control use case – firmware 

authentication. The purpose of firmware authentication is to prevent unauthorized code from 

being executed on the device. The scenario is that TrustZone does not have direct access to the 

external flash drive and must rely on the CPU OS to load the Video CPU firmware from external 

storage to DRAM. However, the CPU OS is not trusted by Video CPU and, therefore, should not 

have access to Video firmware memory while the Video CPU is running. Figure 7 shows the 

relevant software flow.  

 

Figure 7: Firmware Authentication Software Flow 

1. The CPU OS loads the video firmware from external storage to DRAM. At this point, the 

CPU OS has full access to the DRAM memory holding the Video firmware and can 

modify it at will.  

2. The CPU OS calls TrustZone to perform firmware authentication, passing the address 

and size of the loaded Video firmware.  
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3. TrustZone validates the address range to ensure there is no overlapping with other use 

cases. An error is returned to the CPU OS if verification fails.  

4. TrustZone programs one DRAM MPU resource group to protect Video firmware address 

range, granting read and write permission for this resource group to Video CPU only. After 

this step, the CPU OS is no longer able to read or modify the Video firmware.  

5. TrustZone authenticates the firmware.  

6. If the authentication passes, TrustZone releases Video CPU from reset. 

7. Video CPU starts executing.  

If the authentication fails, the MPU resource group for Video CPU is released and an error is 

returned to the CPU OS. 

The access control protection provided in step 4 is essential to the firmware authentication use 

case. If the Video firmware region remained open, any domain could modify the Video code in 

DRAM, defeating the goal of firmware authentication. It is also worth noting that the Video CPU 

reset control registers must also be protected. If not, any domain could release Video CPU from 

reset and let it run arbitrary code. 
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Summary 

Access control is one of the most important building blocks of SoC security architecture. We 

have provided an overview of how access control works on Snapdragon SoCs. The three access 

control hardware components –VMIDMT, XPU, and SMMU – are programmed by software, and 

the resulting policies are enforced by the hardware. These components can be placed in a 

target-side or initiator-side topology. Older SoCs tended toward target-side access control 

topology while more modern SoCs use initiator-side topology. Finally, we illustrated the critical 

role of access control in secure use cases through the example of firmware authentication. 
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