Achieving AI @Scale on Mobile Devices

Qualcomm Technologies, Inc.
Mobile is the largest computing platform in the world

>8.5 Billion

Cumulative smartphone unit shipments forecast between 2017-2021

Source: Gartner Mar. ‘17
Years of driving the evolution of wireless

#1 Fabless semiconductor company

#1 in 3G/4G LTE modem

842M MSM™ chipsets shipped FY’16

Source: Qualcomm Incorporated data. Currently, Qualcomm semiconductors are products of Qualcomm Technologies, Inc. or its subsidiaries. MSM is a product of Qualcomm Technologies, Inc. IHS, Mar. ’17; Strategy Analytics, Mar. ’17
Qualcomm Technologies’ success is based on technology leadership.
Chipset complexity is growing dramatically

More frequent and more complex design cycles

Comparative scale

Circa 2000

<10 Million
Transistors on a chip
1 chipset per year

Today

>3 Billion
Transistors on a chip
~10 chipsets per year
A mobile processor today—Snapdragon 835
Highly integrated and complex SoC using 10nm process technology

Snapdragon X16 LTE
World’s first announced gigabit-class LTE modem

Qualcomm® Hexagon™ DSP
Snapdragon Neural Processing Engine support

Qualcomm® Kryo™ 280 CPU
Our most power efficient architecture to date

Qualcomm® Adreno™ Visual Processing
25% faster graphics rendering
60x more display colors*

Qualcomm Spectra™ Camera ISP
Smooth zoom | Fast-autofocus
True to life colors

Qualcomm® Mobile Security
First to support full biometric suite

* Compared to Snapdragon 820

Qualcomm Adreno, Qualcomm Kryo, Qualcomm Hexagon, Qualcomm Spectra, Qualcomm Aqstic, Qualcomm Location Suite, Qualcomm All-Ways Aware, and Qualcomm Mobile Security are products of Qualcomm Technologies, Inc.
Mobile scale changes everything

Rapid replacement cycles
Superior scale
Integrated and optimized technologies
Intelligence is moving to the device

Server/Cloud
- Training
- Execution/Inference

Devices
- Execution/Inference
- Training (emerging)
On-device intelligence is paramount

Process data closest to the source, complement the cloud

- Privacy
- Reliability
- Low latency
- Efficient use of network bandwidth
Mobile is becoming the pervasive AI platform
Qualcomm Technologies is accelerating on-device AI

Making efficient on-device machine learning possible for highly responsive, private, and intuitive user experiences
Qualcomm® Artificial Intelligence Platform

The platform for efficient on-device machine learning

A high-performance platform designed to support myriad intelligent-on-device-capabilities that utilize:

• Qualcomm® Snapdragon™ mobile platform’s heterogeneous compute capabilities within a highly integrated SoC

• Innovations in machine learning algorithms and enabling software

• Development frameworks to minimize the time and effort for integrating customer networks with our platform

Qualcomm Artificial Intelligence Platform and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc.
Making on-device intelligence pervasive
Focusing on high performance HW/SW and optimized network design

Efficient hardware
Developing heterogeneous compute to run demanding neural networks at low power and within thermal limits
Selecting the right compute block for the right task

Algorithmic advancements
Algorithmic research that benefits from state-of-the-art deep neural networks
Optimization for space and runtime efficiency

Software tools
Software accelerated run-time for deep learning
SDK/development frameworks
Algorithmic enhancements for space and runtime efficiency
Improve performance by addressing model complexity

Neural network optimizations for embedded

- Improved network architecture
- Focus on memory and storage
 - Reduce bit widths
 - Model compression
 - Leverage sparsity
- Architecture learning

Required operations per image

<table>
<thead>
<tr>
<th>Network versions</th>
<th>GOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>40000</td>
</tr>
<tr>
<td>QTI V1</td>
<td>10000</td>
</tr>
<tr>
<td>QTI V2</td>
<td>5000</td>
</tr>
<tr>
<td>QTI V3</td>
<td>2000</td>
</tr>
</tbody>
</table>

Reduction in complexity: 27x

Source: Qualcomm Research. Results from running a semantic segmentation network for automotive.
Snapdragon Neural Processing SDK
Software accelerated runtime for the execution of deep neural networks on device

Efficient execution on Snapdragon
- Takes advantage of Snapdragon heterogeneous computing capabilities
- Runtime and libraries accelerate deep neural net processing on all engines: CPU, GPU, and DSP with vector extensions

Model framework/Network support
- Convolutional neural networks and LSTMs
- Support for Caffe/Caffe2, TensorFlow, and user/developer defined layers

Optimization/Debugging tools
- Offline network conversion tools
- Debug and analyze network performance
- API and SDK documentation with sample code
- Ease of integration into customer applications

Available at: developer.qualcomm.com
Robust software and tools simplify development

- Object classification
- Face detection
- Scene segmentation
- Natural language understanding
- Speaker recognition
- Security/Authentication
- Resource management

NP SDK

GoogleNet/Inception
SSD
Alexnet
ResNet
SqueezeNet

TensorFlow
Caffe
Caffe2
ONNX

Mobile
Auto
Home
Camera
XR
Model to runtime workflow: Training and inference

Training: Machine learning experts build and train their network to solve their particular problem

Inference: NPE enables the network to run on Snapdragon devices

Deep learning frameworks (e.g., Caffe2, TensorFlow)

Training data

Test data

Model building and training

Backward propagation

Model testing

Good enough match?

No

Yes

Model file
Static weights and biases

Data 1

Completed

Application

NPE Enabled App
.dlc file

NPE runtime

Optimized
NPE Model (.dlc file)

Model optimization tools

NPE Model (.dlc file)

Model conversion tools

Optional (quantization, compression, etc.)
High-level software architecture for the Snapdragon NPE

OS support:
- ARM Android
- ARM Linux
- x86 Linux
User Defined Layer (UDL) workflow
Supports prototyping of layers not yet supported by the Snapdragon NPE

NPE workflow

Model file (static weights and biases) → Model conversion tool → NPE model (.dlc file) → NPE runtime

NPE workflow with UDL

Model file (static weights and biases) → Model conversion tool → NPE model (.dlc file) → NPE runtime

UDL

UDL handler

Note: there is runtime performance cost to inserting a UDL into a network, related to “context” switching. Execution context is transferred to user in CPU control plane.
Converting and quantizing a model

snpe-<framework>-to-dlc
(<framework> = Caffe | Caffe2 | TensorFlow)

- Input is the model in native framework format
- Output is a converted but not optimized NPE DLC file

snpe-dlc-optimize

- Converts non-quantized DLC models into 8-bit quantized DLC models
 - Additionally implements further optimizations such as SVD compression
- Quantized model is necessary for fixed-point NPE runtimes (e.g. DSP)
API example usage

NPE provides a simple C++ API with the following functionality:

• Load a DLC model and select the runtime
• Execute the model
• Debug support
 ◦ Dump the output of all layers in a model
• Collect performance metrics
 ◦ Per-layer timing

Green API calls are only required for UDLs

See NativeCpp/BatchRun/ example in NPE
100s of Millions of units

AI + Qualcomm Technologies

Massive scale

Learn more at: developer.qualcomm.com

Based on Snapdragon Platforms capable of supporting Snapdragon NPE today.
Qualcomm Technologies and Facebook collaboration for massive AI scale
Facebook + Qualcomm Technologies
On-device AI with Snapdragon

Facebook and Qualcomm’s Caffe2 collaboration

- Demonstrated Caffe2 acceleration with NPE at F8 2017
- 5x performance upside on GPU (compared to CPU)
- Announced commercial support of Caffe2 in July through Qualcomm Developer Network
- Facebook AML has integrated the NPE with Caffe2

Future Caffe2/NPE research and development

- Continue to work closely with Facebook to optimize key networks for maximum on-device performance
- Enhancements to Caffe2 allowing Snapdragon specific SoC optimizations
- More advanced AI-powered XR applications

“On-device machine learning is made possible by the Qualcomm Snapdragon NPE which does the heavy lifting needed to run neural networks more efficiently on Snapdragon devices.”

Source: XDA

F8 2017
Enhancing the Facebook experience through on-device AI

More engaging social media with AI and AR

Augmented reality features potentially powered by AI

• Style transfer and filters
• Frames and masks
• Photo and live videos, including 360°
• Contextual awareness (e.g. location/sensor metadata)

On-device acceleration benefits

• Smooth UI with increased frame rate
• Increased battery life

*Requires network connection and will support up to 20 hours of battery life
What’s next
AI hardware

What does the future look like?
AI offers enhanced experiences and new capabilities for smartphones

- True personal assistance
- Extended battery life
- Enhanced connectivity
- Superior photography
- Natural user interfaces
- Enhanced security

A new development paradigm where things repeatedly improve
AI will bring XR closer to the ultimate level of immersion
Creating physical presence in real or imagined worlds

- **Visuals**: Rendering techniques
- **Battery efficiency**: Managing workload concurrency
- **Interactions**: Natural UI
- **Depth estimation**: Depth estimation
- **Sounds**: Audio filtering and cleanup
AI is revolutionizing the car of the future

Redefining the in-car experience
- Natural user interfaces
- Personalization
- Driver awareness monitoring

Paving the road to autonomy
- Surround view perception
- Sensor fusion
- Path planning
- Decision making
What’s next?

- Specialized hardware
- Algorithmic advancements
- Improved optimization strategies