QUALCOMIW

Secure Boot and Image AuthenUcatlon e
Technical Overview

//'&

\ H ,,,;//"""

Qualcomm Technologies Inc.

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc.
Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries.

Other products and brand names may be trademarks or registered trademarks of their respective owners.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121
US.A.

©2016 Qualcomm Technologies, Inc.
All Rights Reserved.

Contents

1 Overview

2 Signed Image Format

3 Image Parsing and Loading Process
4 Certificates Chain and Format

5 Signatures

6 Summary

12

14

Secure boot is defined as a boot sequence in which each software image to be executed is authenticated by software that was

previously verified. This sequence is designed to prevent unauthorized or modified code from being run. Our chain of trust is built
according to this definition, starting with the first piece of immutable software to be run out of read-only-memory (ROM). This first
ROM bootloader cryptographically verifies the signature of the next bootloader in the chain, then that bootloader cryptographically

verifies the signature of the next software image or images, and so on.

On the applications processor the first piece of ROM-based software mentioned above, which we call the Primary BootLoader
(PBL), typically loads and authenticates a Secondary BootLoader (SBL) or eXtensible BootLoader (XBL) as the next image to
be run. This image then loads and authenticates a feature-rich applications bootloader such as Little Kernel (LK) or the Unified
Extensible Firmware Interface (UEFD that is specific to the Operating System (OS) that it will subsequently load. In modern

Qualcomm Technologies products, these software images are all standard Executable and Linkable Format (ELF) images.

Like most digitally signed software, these image signatures include a certificate chain. The “Attestation certificate” refers to the
lowest level certificate authorizing the signature of the software image. This certificate is signed by the “Attestation CA certificate”
which is in turn signed by the “Root CA certificate”. The Root CA certificate is validated by computing its hash and comparing to

a value stored either in eFuse or in ROM (eFuse is a set of hardware embedded one-time programmable bits that once “blown”
cannot be reverted). This stored Root CA hash value is provisioned to the device by the OEM, giving them full control of the
device’s cryptographic root of trust. The certificate chain hierarchy is shown in Figure 3 and later described in more detail. Two-

certificate chains are also supported, wherein the Attestation certificate is signed directly by the Root CA certificate.

Unlike other signed software images, the signature for Qualcomm Technologies signed images is only computed over a single
segment in the image and not the entire image. The segment containing the signature is called the hash segment. This hash
segment is a collection of the hash values of the other ELF segments that are included in the image. In other words we sign the
collection of ELF segment hashes, rather than signing the entire ELF image. This representation is designed to relax memory size
requirements and increases flexibility during loading. The Attestation certificate used to verify the signature on this hash segment
also includes additional fields that can bind restrictions to the signature (preventing “rolling back” to older versions of the software

image, restricting the signature to a particular type of software image, a particular model of hardware, a particular OEM, etc.).

The following sections of this document discuss the format of our signed ELF images, the process of loading and authenticating

those images, certificate contents, and signature algorithms in greater detail.

@ Signed Image Format

As previously mentioned, the software image is an ELF file and contains the standard ELF and program headers. Both 32-bit and
64-bit ELF classes are supported. See Figure 1for an example 32-bit ELF image.

unsigned char e_ident[16]; /* Magic number and other info */
uintlé e type; /* Object file type */
uintlé e machine; /* Architecture */
uint32 e version; /* Object file version */
uint32 e entry; /* Entry point virtual address */
uint32 e phoff; /* Program header table file offset */
uint32 e shoff; /* Section header table file offset */
J uint32 e flags; /* Processor-specific flags */

.7 | uintle e ehsize; /* ELF header size in bytes */

Elf Header a uintle e:phentsize; /* Program header table entry size */
uintlé e phnum; /* Program header table entry count */
uintlé e_shentsize; /* Section header table entry size */
uintlé e shnum; /* Section header table entry count */

PrOQra”‘HeaderS uintl6 e:shstrndx; /* Section header string table index */
\ 32-bit ELF header
\
Hash Table Segment \
\ uint32 p type; /* Segment type */
uint32 proffsety /* Segment file offset */
Elf Segment 1 \ | uint32 p_vaddr; /* Segment virtual address */
} uint32 p_paddr; /* Segment physical address */
Elf Segment 2 uint32 p filesz; /* Segment size in file */
uint32 p memsz; /* Segment size in memory */
Elf Segment 3 uint32 p flags; /* Segment flags */
uint32 p_align; /* Segment alignment */
32-bit PROGRAM header

Figure 1: ELF and PROGRAM headers in a 32-bit ELF

The hash table segment, or simply hash segment, typically follows the ELF and Program headers in the image. It contains its own
40-byte header which specifies the size of the entire hash segment, the size of the table of hashes, the size of the attestation
signature, and the size of the certificate chain (all in bytes). This hash table contains the SHA-256 digest of each segment in

the ELF image, as well as a digest for the ELF and Program headers. It is important to authenticate these headers since they
contain important information (addresses, execution entry point, etc.). The signature for the image is computed over this table of
digests and appended to it, along with the certificate chain, to form the hash segment. The entry in the hash table corresponding
to the hash segment itself is empty, as the entire hash segment is authenticated during signature verification. The signature is

accompanied by a certificate chain, as seen in Figure 2.

Elf Header ,' Hash Table Header
| Hash(EIf Hdr |l Prog. HdP)
Program Headers .l <Empty>
/ Hash(Elf Segment 1)
. Hash(Elf Segment 2)
Hash(Elf Segment 3)
Verify Signature
Hash Table Segment)
S|gnature ﬁ
Elf Segment 1 S . Cert Chain Attestation Cert j
h Verify Signature
Elf Segment 2 . CA Cert
\
Elf Segment 3 ‘\ Root Cert Verify Signature
validate T
Root Key Hash

Figure 2: Hash Table Segment and Signature

@ Image Parsing and Loading Process

When an image is to be authenticated and executed, it must first be loaded from persistent storage into internal memory. Internal
memory is generally protected and trusted but only available when the device is powered. External flash storage and external
RAM are accessible by other entities and thus considered untrusted. In order to ensure the image has not been modified or

tampered with, it must be authenticated within the trust boundary in internal memory before being executed.

First the ELF header is loaded from storage, parsed, and validated. The ELF header specifies a number of things, including
program and section header sizes and offsets, as well as the virtual address of the image’s entry-point. Next the Program headers

are loaded, parsed, and validated. See the ELF specification for ARM architecture for more detail on ELF'.

One and only one of the program headers must represent a hash segment, which is indicated by a segment type value in the
program header’s p_flags field. When that hash segment is found, it is loaded to internal memory for authentication. The hash
segment is then authenticated by verifying its signature and accompanying certificate chain (further detailed in the following
sections). The ELF headers and program headers are hashed and compared to their corresponding entry in the authenticated
hash table segment. Each non-paged LOAD segment in the ELF file is then loaded from storage into internal memory and
hashed. Each segment’s calculated hash is compared to its corresponding entry in the authenticated hash table in the same order
as it appears in the program header (segments therefore cannot be reordered). Since the hash segment is verified, comparing
computed hashes of segments and the headers provides equivalent security to verifying a signature of the entire image while also

allowing for loading and authenticating on a per-segment basis.

'ELF for ARM architecture - http:/infocenter.arm.com/help/topic/com.arm.doc.ihi0044f/IHI0044F_aaelf pdf

When headers or segments are loaded from external storage, their destination address and size in memory is verified to be fully
contained in a whitelist to confirm that they are strictly confined to the memory space allotted for them. This is designed to
prevent data from being written to unauthorized memory addresses, addresses where other data already resides, or from spilling
over into another region. When calculating these offsets and sizes, the arithmetic is checked to ensure the result does not
overflow (i.e. wrap around past zero). These checks are also performed on the other headers, the certificates, and other items

where offsets and sizes are calculated.

@ Certificates Chain and Format

The certificate chain can consist of two or three certificates, all following the ITU-T X509 v3 format. The certificate chain
includes an Attestation certificate, (optionally) an Attestation CA certificate? and a Root CA certificate. Each is signed by the next
certificate in the chain, as shown in Figure 3. The SHA-256 hash digest of the Root CA certificate must match the value stored in

eFuse or stored in ROM in order to anchor the chain of trust.

A two-certificate chain is designed to reduce the on-device verification time and certificate chain size of each image by one
certificate. In exchange, the server-side signer has less flexibility in authorizing entities to generate Attestation certificates (the job
of the Attestation CA). This server-side signer also loses the ability to revoke that authorization since the Root CA directly signs

Attestation certificates in this model and is anchored to eFuses on-device.

e The data which was signed

Input to signing system g
Qutput of signing system Source
Signature (D)
\“‘2, "y “,\
o \
_55\% \ —
eb“'o\,/' g Attestation Validates
&@‘,.r" Certificate J
& /
(:> /
7
[private key () | ey pair [PublicKey(A) |
%\)& K Signature (A) ..
L N\
W -
&5'3\‘," Attestation Validates
Ol
@%“é-"" CA |
L / Certificate chain
,//
Key pair - |_PublicKey () |
o Signature (1) .
S AN
EU \
e .
9,5‘ Root CA Validates
PO
& /
o S
Private Key (R) |-—--Key pair—| Public Key (R) |
Signature (R)

Figure 3: Certificate Chain Structure

The Root CA and Attestation CA certificates are typical X.509 certificates containing the same fields as those you might find
securing a web browsing session. The Attestation certificate however, will include additional details in its Org Unit (OU) fields. All
certificates are fully conformant to X.509. Profiles 1-3 below display certificate fields taken from the certificate chain of a signed

Qualcomm® Snapdragon™ 820 processor eXtensible BootLoader (XBL) image.

“In a two-certificate chain, the Attestation certificate appears first and is signed directly by a self-signed Root certificate that follows.

Signature Algorithm: RSA PKCS5#1 wl1.5 Signature with SHA256
Valid notBefore: B3-Mar-16 83:24 Valid notAfter: 27-Feb-36 B3:24
Serial Mumber: 8x@81

Issuer:
Organisation Mame: OEM
Organisation Unit: General OEM Root CA
Common Name: OEM ROOT CA
Locality: SANDIEGD
State: CA
Country: us
Subject:
Organisation MName: OEM
Organisation Unit: General OEM Root CA
Common MName: 0EM ROOT CA
Locality: SANDIEGD
State: CA
Country: us
Public Key Modulus (hex):
ed4 b3 38 @7 25 24 b@ 92 bl 22 2d da 3e B7 c9 41 Ba ac 7e 53 B6 S5e 5c f3 4c a6 f@ 6a 72 35 52 2B I T . § P WY I =121}
bb a6 ff 38 @b 36 15 71 @7 23 a7 7b ed ef 21 @c 57 39 13 69 96 ad ad 5f 26 66 52 B3 e2 43 dc 25 Lo.B.6.g.#.{..!.WO.1i..._&FR..C.%
B8 dl da 3T 46 el 6@ fd b3 21 72 76 d6 @3 7d a7 54 B6 aB 97 Od 24 5c 54 c4 17 92 3b b9 Te 90 42 O P) " T R AN P TN
13 4b fZ cf 86 a3 5d 3c a% bz 85 e@ 5c 3c 3b 93 91 47 4f 5a ad d% 69 3c @f f4 fc 15 5% 79 b7 58 Kewa

b5 85 Be ff cc aa c5> db 7a @b B7 @9 2a @6 1c 5f bl 85 38 b8 12 6b 96 11 61 82 B2 BG6 5e b7 le 44
3d Bd a3 85 Ba 99 eb f2 bf 1f cd4 el 18 21 cf e% ed cd bb 45 af dc 3d 26 64 32 @4 ed 87 la aa bd Sranasnas

bS8 af @6 ad 77 4f ad da cd 92 29 ae ec aB 94 2T 5b ec B3 T2 BB e@ 61 9d e3 Bb 62 17 Ba dd BR el snasWlaces
B3 1e 36 aa 3a @7 3f 36 39 73 ff e4 59 6b b@ ec 1la 51 fc B9 ab da 5c B5 B3 9B f3 f1 33 93 93 5 ..6.:.7609s.

Public Key Exponent (int): 3 (aka F@ exponent)

Extensions:
Extension MName Critical Value
Basic Constraints FALSE Subject is a CA
Key Usage FALSE CRL Signature, Certificate Signature
Subject Key Identifier FALSE 9731A1@D3EGDB33FAG3FC34BEFASDRCA171534D8

Signature (Signature Verification Passed):
AS 48 E1 91 5A E5 25 BS C4 BA 11 BC 7F 21 BC 38 46 49 2B C@ AB B9 71 D1 32 38 44 SF F@ C4 65 C6 HeoZe%oojouo ! uBFI+...q.28D...2.
B5 5A 95 AE 3F 67 AZ 4B DF 1@ 32 D@ 27 BE BE 15 5B @B B@ D3 7A 27 C5 54 594 37 5A B6 2B E1 C7 AS Zou?gKe 20 ezt T TR
5F Al 86 CB 74 19 61 64 6A E4 57 DB 6F BB 48 DD F5 B85 56 14 4D E7 6B 71 EB 27 38 38 13 AA CD BS _«..otiadj. Moo H. . V.MU kg, 'BBL ...
7D F3 BE 24 30 83 65 Al C3 A5 01 61 DE 9D 5@ 4@ B2 BE D@ 2B BB 4@ 2C AE 82 72 @D 7D 99 F3 BB @B }.f¢R.e....a..PR... (.8, ..}
3F C2 44 69 98 FB 87 79 14 62 B4 60 EE @2 @F 11 6@ B89 CB D2 C7 6@ F5 EB E@ FD FB 68 CA 25 76 ER L T T Y
FB E2 65 B1 S5E E1 23 OE B3 76 49 94 FC DE 79 13 11 ED @A Al 72 77 D@ FE C4 B2 CB 55 27 B4 DE 94 Y -TSat RT) R T M™esaass Yeus
32 E7 93 AC 4D 5C 41 F4 2F Be 67 8D B@ 3E 2B @5 5B 69 D4 Be 20 14 12 56 DC 75 BD 94 DE AC BB 22 ZooMVAL gl XD) W Ve "
5F BA BB 97 4F B9 28 CF CD 24 9C 78 16 Be 32 Bl C1 59 FB EA AF 6B 5E 5E 57 2@ B3 BB EE FB E6 79 _ekiDo (i $ip 2 Yao M Ll ¥

Profile 1: Root Certificate Profile

Signature Algorithm:
Valid notBefore: 83-Mar-16 83:28
Serial Number: Bx@85

Issuer:

Organisation MName: 0EM

RSA PKCS#1 v1.5 Signature with SHA256
Valid notAfter:

27-Feb-36 @3:28

Organisation Unit: General 0OEM Root CA
Common Name: OEM ROOT CA
Locality: SANDIEGOD
State: CA
Country: us

Subject:
Organisation Mame: OEM

Organisation Unit:

Common Name:

Locality: SANDIEGD

State: CA

Country: us
Public Key Modulus (hex):

of 52 1d 34 bd cc 5e 25 25 Tb
f2 d2 cB@ 54 37 13 bb ef Zc 4°F
6a 45 B3 2c 53 2f 6d 54 ed 7d
bc a5 3f 35 @f f7 39 db d9 @3
Be 71 2B af d3 20 36 64 1T 45
6@ ef 7e 77 3c 28 12 Ta Tc 32

c
a3
c8
e
T8
ai@

General OEM Attestation CA
OEM Attestation CA

E2 eb b5 65 6c 83 c3 54 aa 26 59 b2 aB Ba 5c 3T <7 B2 fB
76 aa 97 d2 43 52 Bd d2 a2 b3 5B cB Bb f7 eBH 29 44 6b af
17 Be c7 74 67 9e B3 Vb 58 1f 7d el 4@ b3 eb 58 le cl 31
eb le 29 @3 47 390 19 @7 21 592 3@ f7 f9 fB8 87 Bb 4e 39 a9
65 21 18 af fb @c el 85 al cd 45 46 24 b4 cB ed f1 44 23
ad4 db B7 af 74 bl 43 Ve B1 25 95 BE 2T 7b b9 @a b% B1 78

f@ 6b dd aB 53 5d ab 6d B2 7f ab 4f 98 7f 5f 9B a5 58 cB 285 B6 19 aa @6 16 eB f6 bl el 75
B2 B3 5 eb 96 24 ec 35 33 a9 96 24 Bl d4 76 6F 2e 2e 52 21 @7 72 e@ @1 3T 7f 15 e3 7e 1f
Public Key Exponent (int): 3 {(aka F@ exponent)
Extensions:
Extension Name Critical Value
Basic Constraints FALSE Subject is a CA and supports maximum of @ sub-CAs
Key Usage FALSE CRL Signature, Certificate Signature
Subject Key Identifier FALSE 7BBELDBODTE612E74FBRSFC3EBEERERCDEABFARSS
Authority Key Identifier FALSE 5731A10D3EGDE33FA03FC34BEFADDACA1T1534DY
Signature (Signature Verification Passed):
3A CA 1IF 31 AC 59 48 E6 C2 @D 7E A% FF 3B @B 33 E8 29 11 B7 (B @E 77 15 6D 22 13 AS BC 48

D2 1A A6 AC 33 EB 22 3F 7D FE
7F 44 3F A7 1E 13 BB B1 13 97
91 C3 C7 @7 6A 72 E5 F2 5E 45
DE 5E 35 F5 AB 8D 79 33 74 FE
C5 EB FS 4A BA BS 7B BE 2E B2
Al BD FD F2 D6 F@ B2 45 Al @6
66 A3 5D F6 1C 9A 7B 93 DA CF

BC
8c
B9
33
23
4B
2F

B6 86 5F 7C AB BD 16 51 56 @4 BG6 97 C5 E7 F7 CF F& CE 7F
DS BB 5F D4 4@ 28 1F CD @6 E2 32 7D DD E3 BE A® 2A 5F Bl
BA @C BRE 2B 13 6F EE F3 SE BA 2D 2A 3E 7C 97 17 FD 77 F6
B4 5C 34 7@ 3F 18 DD BF 90 8B 1A FB 95 @6 21 1D 892 35 66
9B SE D5 55 4A 1D A2 A5 12 5F @6 F5 7F 28 43 29 BS 17 EB
B5 1E EE DF D3 E1 65 DY E1 C3 DC 3B 9F 3B 98 20 1C E2 &9
2E DE 9@ FA 75 95 CF E6 5@ CB 9A 63 97 CC 93 6@ 93 7B F2

Profile 2: Attestation CA Certificate Profile

B8
66
be
7f
c3
27
44
c7

1E
F3
45
T8

F5
39
BE

3d
65
fe
ab
de
60
af
31

{pathLen)

ES
87
13
AB

Ch
a6
6E

T T B L N

. T7...,00v...CR....X....)Dk. e
JE.,S/mT.}....tg.. 0. 3.8 X 1.
o P }.GB..!.8 .
S TP 1 - [- EF$....
Caonwe) oz |20, t.C~ %, . /]
KeoSlaMeuaOue aPu)einnnnnnn
..... $e5eaaasVOaualal

teeluYHe ool LB w.m" H

G LD SR DR T

D7evnnnnnnns _.el. veeuk_LE.
e LT I T I T
Aoaaay3tLUNpTL L e I) i
sssdesdena®esallIansnsnas [CYasuss
....... EeuKivonasBanesBaBa 2019
folosefeweFeanatlen e PonCana™adaun

The calculated SHA-256 digest of the Root CA certificate seen in Profile 1 would need to match the value in the device’s eFuse or
ROM in order for this Root CA certificate to be valid on that device.

The Basic Constraints indicate that this certificate can sign other certificates (ca=Trur). We see that the Attestation CA certificate

can also sign certificates, but only a leaf certificate like the Attestation certificate (ca=TrRUE, pathLen=0). Both certificates’ Key

Usage indicate they are authorized for certificate signatures. The Subject Key Identifier and Authority Key Identifier fields indicate
that the Root CA is the authority for the Attestation CA (and the Attestation CA is the authority for the Attestation certificate

below). These two fields are included mostly for tracking rather than for security purposes.

Eignature Algorithm: RSA PKCS#1 v1.5 Signature with SHAZS56
Valid notBefore: 14-5ep-16 84:46 v

Serial Number: 8@x@1
Issuer:
Organisation Name: OEM
Common Mame: OEM Attest
Locality: SANDIEGD
State: CA
Country: us
Subject:
Organisation Name: SecTools
Common Mame:
Locality: San Diego
State: California
Country: us
Qualcomm Control (OU) Fields:
ou=e1 SW_ID aReRRRRRRRRA
ou=e2 HW_ID BR04TREL2ATA
ou=e3 DEBUG AReRARRRRRRA
ou=e4 OEM_ID 2A7R
ou=es SW_SIZE aeeRR248
ou=2g MODEL_ID 3DE2
ou=a7 SHAZ5E aeel
Public Key Modulus (hex):

cd
al
S9a
53
S5a
13
19
53

Public

al c® 1d 86 66 &1 7b 48 57 65
64 B b4 b3 e5 b9 B7 34 07 62
13 bB 18 13 c7 e7 fl a4 41 42
B8 BY Ba 63 B4 96 e3 5Ff fc f6
2d 2c 75 b7 B9 65 44 e2 35 17
f7 6b 4d f7 c7 81 f@ f4 aB dd
48 cB @f Se 84 9B Be b2 99 ed
Ba B2 aa 5c 2e Be 31 28 2e 1B

Key Exponent {(int): 3 (aka F@

Extensions:

Extension Mame Criti

alid notAfter: @9-Sep-36 B4:46

ation CA

SecTools Test User

apea
3DES
aneaz

74 48 13 ab 46 el eB cb f6 ac 13 65 4b cd Ea bb
1f ec cd ed 55 Bb cf ad dB 5c Be b3 7b 7 c@ 13
b3 91 2e 9¢ @b f8 c9 2 2a 6f Ve da 74 cc db @B
20 dd B5 ee e7 @a a8 7c 7T 93 2e @1 B6 25 @c Ta
8d 6e 4f 13 99 fd 67 le 75 b9 64 eb 65 57 7d 4f
Bc be b3 ae 23 20 e5 b3 cf cB 17 e@ 8b 5e 9d B4
58 Bc B4 73 33 53 @9 e3 a@ e3 65 77 59 ec fc @7
B8 bl ea fd 6e ba 98 23 b9 38 75 Oa bl 1le fa fa

exponent)

cal Value

le 38 af 16 d6 = f.{@etH..F...... eK.j..9...
bl 8 f9 ¢l bbE sasanas I N
7d de af 44 ¢c6 Liieeeeen [.1: PP #0~.taua}euDa
3e 2e 9f dB %a T | et
3B 1d 45 fd B@ Z-,u..eD.5..n0...0.u.d.ewW}OB.E..
2b 858 32 cl 7 P #H oeeennnas Mt
3f Bc 54 c2 87 sHeaaaaaaas Xlds3S....ewY...7.T..
Of 43 67 18 73 Bevahandl cuunnus n..#.Bu...... Cg.s

Basic Constraints FALSE
Key Usage FALSE
Authority Key Identifier FALSE
CRL Distribution Point FALSE

Signature (Signature Verification Pas

BA
2B
AB
3B
:13)
DC
37
49

15 7A B2 BB BC 86 45 5C 17 36
2 85 A3 5B F2 61 39 29 23 63
EE 5A 65 1A FE AZ C& 9A D2 D3
5D 91 9A BE BB 22 2E 52 3B 22
@D BB EA B5 b5 BF A@ 5C AC 34
1E 93 C1 C2 FC 7A BF AE 49 95
@8 1A @@ 35 DS F7 2E 4B B2 62
F4 F4 C5 7D E7 BF BA B3 C4 5D

Subject is NOT a CA and supports maximum
Digital Signature, Non-Repudiation, Data
7BBE1DBSDTE12EV4FBRSFC3EBEESEGCDERBFARSYS
(Field Not Parsed)

sed):

of B sub-CAs (pathlLen)
Encipherment, Key Encipherment

3A 7B 5B @6 D1 S RN LV 3 S PO P sl
9E 83 CC 23 FC +...X.a9)#cL|6].I.".p..B..
FE C6 5B 88 @F Y. T {1+ R R

4E B4 C5 BB 4E B] MR ' P r.

AB ED SA 1F D2 i BreaNediBiaaass) #.
AD 1C SE 71 @7 z..I..h PUasasas

Profile 3: Attestation Certificate Profile

The Basic Constraints of the Attestation certificate indicate that this certificate cannot sign other certificates (ca=rarse) but that

Key Usage indicates it is authorized for digital signatures (signing the software image). While the same Root CA and Attestation

CA may be used for multiple images on multiple devices, a new Attestation certificate is generated for each signed image instance.

The Attestation certificate contains OU fields which may provide information or restrictions on that signed image instance. The

values found in OU fields may then be validated against those read from eFuse or explicitly expected by the verifying software. We

discuss the common OU fields below.

Qualcomm Technologies OU Fields

The OU fields are designed to cryptographically bind various attributes to the signature and to provide information about the

image and/or signature.

01SwW_ID
The software ID binds the signature to a particular version of a particular software image. This 64-bit value is a concatenation of
those two values:

01 SW_ID VERSION (32-bit) || IMAGE_ID (32-bit)

The value “0x0000000000000000” indicates version O of IMAGE_ID O (XBL). If eFuse values indicated that the current version was
“1”, then this image would fail verification. Version enforcement is done in order to prevent loading an older, perhaps vulnerable,
version of the image that has a valid signature attached. The IMAGE_ID check is enforced to confirm that we are loading and

verifying the software image that is expected to execute next — in this case, XBL Version O.

02 HW_ID
The hardware ID binds the signature to a particular device family, model, and OEM. In the example shown, the HW_ID is

constructed as follows:
02 HW_ID MSM_ID (32-bit) || OEM_ID (16-bit) || MODEL ID (16-bit)

The value “0x009470E122703DB9” indicates that this image was signed for a device with MSM_ID 0x00947081, OEM_ID 0x2a70, and
MODEL_ID 0x3p89. The MSM_ID is a unique identifier chosen by Qualcomm Technologies to designate a specific chip-type within
a given chip-family. The fields contained in HW_ID must match those provisioned in eFuse for the signature to be valid. Therefore
this signature would be invalid on any other chip model or chip-type. It would also be invalid on a matching device model and
chip-type with a differing OEM_ID value in eFuse; a legitimate signature created by OEM “A” will not be valid on any other OEM'’s

device - even for the exact same software image version and type on a device using the exact same model and chip-type.

03 DEBUG
The Debug OU field indicates whether debug capability should be disabled or not. In the certificate above, the debug value is set

to DISABLED (“0x0000000000000002").

04 OEML_ID
OU 04 is an easy-to-read copy of the OEM_ID from the HW_ID field, and is for information only. The value of OEM_ID is enforced in
the HW_ID validation described above.

05 SW_SIZE
This OU field indicates the size of the data being signed (not the size of the software image). From Figure 2 we see this includes
the Hash Table Header (40-bytes) and the Hash Table Entries (32-bytes per entry). The value of 0x24s indicates that there are 17

segments in this image. This OU field is for information only.

06 MODEL_ID
OU 06 is an easy-to-read copy of the MODEL_ID from the HW_ID field, and is for information only. The value of MODEL_ID is

enforced in the HW_ID validation described above.

07 SHA256 / SHA1
This OU field indicates which hash algorithm is used to calculate the hash during signature verification. SHA-256 and SHA-1 are

the current options. The example specifies SHA-256 (“0001”) as the hash algorithm.

@ Signatures

Signature Algorithms

The RSASSA-PKCS#1 v15 signature scheme is supported with SHA-256 or SHA-1 as the underlying hash algorithm. Newer
chipsets also support RSASSA-PSS with SHA-256 as the underlying hash algorithm. A public exponent of 3 or 65,537 is supported
for RSASSA-PKCS#1 v1.5, while only public exponent 65,537 is supported for RSASSA-PSS. Standard ECDSA over P-384 with

SHA-384 as the underlying hash algorithm is also supported on a limited number of chipsets.

Certificate Signatures

The certificate signatures are all fully X509 compliant. The certificate chain can be created, parsed, and verified by an open
source X.509 compliant tool (such as OpenSSL). The detailed specification for both the RSASSA-PKCS#1 v1.5 and RSASSA-PSS
signature schemes can be found in “PKCS #7 v21: RSA Cryptography Standard’, published by RSA Laboratories.

Image Hash Segment Signature

RSASSA-PKCS#1v15

After the certificate chain has been verified, the signature on the software image’s hash segment is then verified. (The hash
segment signature is the blue “Signature” appended to the green “Source” box shown in Figure 3) The attestation certificate
indicates which signature algorithm is used to verify the image signature. The standard RSASSA-PKCS#1 v15 signature scheme
message-encoding (sometimes simply referred to as “padding”) is shown in Figure 5. The “Hash” bubble there refers to a standard
SHA-256 or SHA-1 hash function, and “T” includes ASN.1 Digestinfo concatenated with the result of “Hash”.

M
T= Hash Algorithm ID (DER) H
- (0x30 3130 0d 06 09 60 86 48 0165 03 04 02 01 05 00 04 20) ChLen)
v
- PS
EM = 00 01 Ox(FF) 8+ Octets 00 T

Figure 5: RSASSA-PKCS1 v1.5 Standard Encoding®

*Drawn from text specification in PKCS #1v2.1: RSA Cryptography Standard

Qualcomm Technologies hash segment signatures of type RSASSA-PKCS#1 v1.5 vary slightly from the standard in the message
encoding, and in the hash construction. The hash computation and encoded message padding are shown pictographically in

Figure 6. The values “ipad” and “opad” are taken from the HMAC specification.

SW_ID @ ipad H.

HASH

HW _ID & opad » 1

PS
00 01 Ox(FF) 8+ Octets 00 HM

EM

Figure 6: Qualcomm Technologies RSASSA-PKCS1 v1.5 Image Signature Encoding

Our hash segment signature excludes the Digestinfo from the encoded message (EM), and uses an HMAC-like hash keyed with
SW_ID, HW_ID rather than a single key “K”. This is designed to provide a strong binding of the two most important identifiers
(SW_ID and HW_ID) to the image hash (HM) used in signing, rather than being relegated to software checks. The hash algorithm
ID from Figure 5 is not needed here since OU 07 is used to specify the hash algorithm.

RSASSA-PSS
The hash segment signature format for PSS is standards-compliant, as are the certificate signatures. Only SHA-256 is supported

for “Hash” and “MGF” in the PSS signature scheme. For reference, the message-encoding scheme for PSS is given in Figure 7.

Hash
/ , =
* padding; mHash salt
DB = padding; sait Hash
+
EM = maskedDB H be

Figure 7: RSASSA-PSS Encoding*

Software images are loaded from untrusted storage to internal trusted memory and parsed. The loading and parsing phase

includes address and size validation against whitelisted address ranges and integer overflow checks when calculating offsets and

end addresses. First the image’s ELF and Program headers are loaded and parsed, then the hash segment is loaded and parsed.

The hash segment is signed with a two or three certificate chain. Each certificate’s signature is verified with the public key
authorized by the certificate above it. The Attestation certificate is verified by the Attestation CA certificate in the three-certificate
chain (but is verified by the Root CA certificate in the two-certificate chain). If present, the Attestation CA certificate is verified by
the Root CA certificate. The Root CA certificate is validated by comparing its hash to the OEM-provisioned value in eFuse or in
ROM. The software image’s hash segment signature is verified by the public key authorized by the Attestation certificate. This
hash segment signature verification includes enforcement of bindings between Qualcomm Technologies OU fields present in the
Attestation certificate and the corresponding values on-device. A new Attestation certificate is generated each time an image is
signed, making them unique per software image and instance.

“From PKCS #1v21: RSA Cryptography Standard

The certificate chain signature algorithms support standard RSASSA-PKCS#1 v15 with SHA-T or SHA-256 and RSASSA-PSS with
SHA-256. The image hash segment signature supports a standard-variant RSA PKCS#1 v1.5 with SHA-1 or SHA-256 and standard
RSASSA-PSS with SHA-256. ECDSA over P-384 with SHA-384 is supported for both certificate chain signatures and image hash
segment signatures on a limited number of chipsets.

After the certificate chain and image signatures have been verified, each NON-PAGED LOAD segment in the ELF image is hashed
and compared against its hash segment entry. If the comparison fails, or an entry does not exist for that segment, then the
verification sequence fails. Otherwise, all loaded segments of the software image have passed verification, leading back through

the chain of trust to the root of trust.

g————

Root CA Hash Root CA Cert. | Attestation CAl Attestation Hash Segmen LOAD
[eFuse/ROM] Cert. | Cert. & Headers Segments

| I —

Figure 8 The Chain of Trust

Execution is now transferred to the entry point of the image that has just been successfully verified. When the next software

image is to be loaded, authenticated, and executed, the same process is repeated.

