

Qualcomm[®] Al Innovation Challenge

TensorFlow Lite oppo

Testin云测 助力产业智能化

EXTREME VISION 极视角

Qualcomm AI Innovation Challenge

A stage for developers to unleash the potential of Qualcomm AI Engine

Video placeholder Al Innovation Challenge

20+ Hero Apps

4 Educational Webinars for Developers

Qualcomm Spectra* 580 ISP

Qualcomm^a Hexagon^a 780 Processor

Hardware

Qualcomi Sensing

Processor Security

Kryo 680 CPU

Qualcomm" Snapdragon" X60 5G Modem-RF System

Qualcomm" FastConnect" 6900 System

Hexagon 780 Processor

Fused Al accelerator

• •

• •

•

• •

. .

•

• •

Adreno 650 GPU

Tensor

Vector

Scalar

Sensing Hub

•

• •

•

• •

• •

• •

• •

• •

Processor Security Kryo 585 CPU

Hexagon 780 Processor

43% faster Al performance

New instructions:

4-input mixed precision dot product

Wave Matrix Multiply for 16/32-bit floating point

Fused AI accelerator:

Up to **3X** Performance per watt **Tensor 2X**compute capacity

50% performance improvement

Vector support for additional data types

Shared Memory:

16X dedicated memory Up to
1000x
hand off time improvement
in certain use cases

Trillion operations per second

26 TOPS

Snapdragon 888

15 TOPS

Snapdragon 865

Peak performance on classification networks Inference: (inf/s) Snapdragon 888 670 Qualcomm snapdrogon Resnet 50 310 Company A 230 1,110 MobileNet V2 770 320 VGG19 150 70 600 Inception V3 260 144

Power consumption Efficiency: (inf/W) 888 150 Snapdragon 888 Qualcomm snapdrogon Resnet 50 130 Company A 50 310 MobileNet V2 300 120 90 VGG19 40 40 120 Inception V3 75

2nd Gen Qualcomm[®] Sensing Hub

Security

Qualcomm®
Snapdragon™
X60 5G Modem-RF
System

Hub

••••

••••

••••

Qualcomn FastConne 6900 Syste

680 (

Always-on low-power dedicated hardware Al processor

Snapdragon™ X60 5G Modem-RF System

0000

....

....

Qualcomr **FastConne** 6900 Syste

Kry

680 (

Al performance

With 2nd Gen Qualcomm Sensing Hub

1st Gen Qualcomm Sensing Hub 5X

Task Reduction offload from

Hexagon Processor

Hot word detection on Snapdragon 888 using TensorFlow Micro

1

TensorFlow Micro

2nd Gen

Qualcomm Sensing Hub 38% Task offload from Hexagon processor

Video placeholder Al Hardware

Qualcom snapdragon

trinamiX

A brand of BASF – We create chemistry

Software

Qualcomm[®] Neural Processing SDK

Powering over

50014

Android Devices

Hexagon NN direct

on Qualcomm® Snapdragon™ 865

Qualcomm[®] Spectra™ 480 ISP

Qualcomm® Adreno™ 650 GPU

Qualcomm® Hexagon® 698 Processor

Qualcomm® Sensing Hub Qualcomm® Processor Security Qualcomm® Kryo™ 585 CPU Memory

Qualcomm Neural Processing SDK

Android Neural Networks API

Qualcomm[®] Al Engine direct

Qualcomm[®] Adreno[®] 660 GPU

Qualcomm[®] Hexagon[®] 780 Processor

> Qualcomm* Kryo" 680 CPU

Qualcomm[®] Al Engine direct

Accessibility for everyone

Unified AI API available across Qualcomm AI Engine (Hexagon, CPU, GPU)

Compatible with 5th gen Qualcomm Al Engine

Modularity & Extensibility Per accelerators & operation

User defined operators

OpenCL

Hexagon SDK

Custom operators efficiently written in


```
def quantized_add generic(size, a, b, a_offset, b_offset, a_mult, b_mult, output, target, ctx):
 # Construct the TVM computation.
 A offset = tvm.var('A offset', dtype='uint8')
 B_offset = tvm.var('B_offset', dtype='uint8')
 A_mult = tvm.var('A_mult', dtype='uint16')
 B_mult = tvm.var('B_mult', dtype='uint16')
 N = tvm.var("N")
 A = tvm.placeholder((N,), name='A', dtype='uint8')
 B = tvm.placeholder((N,), name='B', dtype='uint8')
 C = tvm.compute((A.shape),
       lambda i: ((A[i].astype('int32') - A_offset.astype('int32')) * A_mult.astype('int32')) +
                 ((B[i].astype('int32') - B_offset.astype('int32')) * B_mult.astype('int32')), name='C')
 # Create the schedule.
 s = tvm.create_schedule(C.op);
 px, x = s[C].split(s[C].op.axis[0], nparts=1)
 s[C].bind(px, tvm.thread axis("pipeline"))
 # Construct the callable object "func" corresponding to the computation.
 func = tvm.build(s, [A, B, C, N, A_offset, B_offset, A_mult, B_mult], target, name='qadd_tvm')
 func(tvm.ndarray.array(a, ctx=ctx), tvm.ndarray.array(b, ctx=ctx), output,
      size, a_offset, b_offset, a_mult, b_mult)
```

13 years

of research to product

13 years of research to product

Al Model Efficiency Toolkit

Improved/Robust quantization for INT16,8,4 Quantization aware training with range learning

Mix precision support

Opensource

2nd gen Qualcomm Sensing Hub

Dedicated Al accelerator

First to support Tensorflow Micro

Hexagon 780 Processor

Fused Al Accelerators

- Tensor 2X compute capacity
- Scalar 50% performance improvement
- Vector Support for additional data types

3X performance per watt improvement

16X dedicated memory

Up to 1000X hand off time improvement in certain use cases

6th gen Qualcomm Al Engine

26 TOPS

A Highlights

Qualcomm Neural Processing SDK & Al Model Efficiency Toolkit

New features and improvements

Qualcomm Al Engine direct

Easier and faster access to the entire AI Engine

TVM Opensource

More efficient coding

Industry leading Al use cases

Super movie with Tetras.AI
Snapchat lenses accelration
NLP with Hugging Face
Skin condition detection with trinamiX

*Compared to previous generations

Qualcomm

Thank you

Follow us on: **f y** in **o**

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2020 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon, Snapdragon Ride, Qualcomm Spectra, Adreno, Hexagon and Kryo are trademarks or registered trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.