Qualcomm Centriq™ 2400 Processor

Barry Wolford, Senior Director, Engineering
Thomas Speier, Senior Director, Engineering
Dileep Bhandarkar, Vice President, Technology
Qualcomm Datacenter Technologies, Inc.
August 22, 2017
@qualcomm
Agenda

- Qualcomm Datacenter Technologies Introduction
- Qualcomm® Falkor™ CPU Overview
- Qualcomm Centriq™ 2400 Server SoC Overview
- Summary
QDT Well Positioned to Address Cloud Datacenter Opportunity

Unique High Performance, Low Power ARM Based CPUs

- Bringing decade of experience delivering high-performance, power-efficient ARM CPU architectures
- Focus on true server class features and performance with aggressive power management techniques
- Partnering with cloud market leaders for product definition
- Uniquely positioned to leverage process leadership driven by mobile industry growth to deliver industry first 10 nm server processor
Qualcomm Falkor™ CPU Designed for the Cloud

- QDT-designed custom core powering Qualcomm Centriq 2400 Processor
- 5th generation custom core design
- Designed from the ground up to meet the needs of cloud service providers
- Fully ARMv8-compliant
- AArch64 only
- Supports EL3 (TrustZone) and EL2 (hypervisor)
- Includes optional cryptography acceleration instructions
 - AES, SHA1, SHA2-256
- Designed for performance, optimized for power
Falkor Core configuration

- Falkor core duplex is building block for SoC
- Two Custom ARM V8 CPUs
- Shared L2 Cache
- Nominal Operating Voltage ~1V
- Shared bus interface to Qualcomm® System Bus (QSB) ring interconnect
 - Qualcomm Proprietary Protocol
 - Custom Bi-Directional Segmented Ring Bus
 - Fully Coherent (Cache & IO)
 - Shortest Path Routing
 - Multicast on Read
 - > 250 GB/s aggregate bandwidth

Falkor Core configuration diagram:
- Power Control
- Falkor ARMv8 Core
- Falkor ARMv8 Core
- L2 cache
- Ring bus interface

Qualcomm System Bus is a product of Qualcomm Datacenter Technologies, Inc.
Falkor L2 Cache

• 128-byte lines, 8-way
• Unified between I-side and D-side
• Shared between two CPUs in duplex
• 128-byte interleaved for improved throughput
• SEC-DED ECC protected
• 15-cycle minimum latency for L2 hit
• Inclusive of L1 D-caches
• 32-bytes per direction per interleave per cycle
Falkor CPU

- Heterogeneous pipeline providing optimal performance per unit power
 - Variable-length pipelines tuned per function
 - Minimizes idle hardware
- 4-issue
 - 3 instructions + 1 direct branch
- 8-dispatch
Branch Prediction

- 0-1 cycle penalty for almost all predicted taken branches
- 16-entry BTIC (branch target instruction cache)
 - Supports 0-cycle branch penalty
- Multi-level BTAC (branch target address cache) for indirect branches
 - 16-entry level-0 BTAC
 - 256-entry level-1 BTAC
 - PC-relative branches utilize I-cache as BTAC
- 16-entry link stack
- Multi-level BHT (branch history table)
 - Multi-faceted scheme involving staged predictors
Instruction Fetch

- Two-level I-cache topology
 - Key element in performance and performance/power efficiency advantage
 - L0 and L1 caches are exclusive

- L0 I-cache
 - 24KB, 64-byte lines, 3-way
 - Way-predicted
 - Parity with auto-correct
 - 0-cycle penalty for L0 hit

- L1 I-cache
 - 64KB, 64-byte lines, 8-way
 - Parity with auto-correct
 - 4-cycle penalty for L0 miss / L1 hit
 - Hardware prefetch on L1 miss

- Fetches up to 4 instructions per cycle
 - Fetch group can span cache lines

- Instructions are decoded and expanded into micro-ops
 - Most instructions map to a single micro-op
Rename (REN), Register Access (RACC), and Reserve (RSV)

- 256-entry rename/completion buffer
- 76-instruction dispatch window
- Up to 128 uncommitted instructions in flight
 - Additional committed instructions may still be waiting on retirement
- Out-of-order dispatch of branches, ALU operations, loads, stores
- Up to 4 instructions retired per cycle
Integer and Branch Execution

- Heterogeneous execution units for integer ALU operations and branches

<table>
<thead>
<tr>
<th>Operation</th>
<th>B-pipe</th>
<th>X-pipe</th>
<th>Y-pipe</th>
<th>Z-pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct branch</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect branch</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Simple ALU</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Multiplies</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pipeline length sized based on operation
Load/Store Execution

- 128 bits load and 128 bits store per cycle
- L1 data cache
 - 32KB, 64-byte lines, 8-way
 - 3-cycle latency for L1 hit
 - Write-through, read-allocate, write-no-allocate
 - Split virtual and physical tags
 - Parity with auto-correct
- Hardware data prefetch engine
 - Prefetches for L1, L2, and L3 caches
 - Detects stride patterns
- TLBs
 - 64-entry L1DTLB
 - 512-entry "final" L2TLB
 - 64-entry "non-final" L2TLB
 - 64-entry Stage-2 TLB
Power Management

- Independent power states for each of CPUs and L2
- Each CPU is powered by a block head switch (BHS) or low-dropout regulator (LDO) from shared supply rail
 - Light sleep: gate off CPU clock
 - Voltage retention: registers and caches retain state
 - Register retention: register state retained using chip power rail
 - Caches and logic are switched off
 - Collapse: register and L1 cache state not retained
- L2 controller
 - Low-power states similar to CPU
 - L2 may auto-clock gate even when CPUs are active
 - L2 may enter retention or collapse state if both CPUs are in low-power states
- Entry/exit to/from low-power states controlled by hardware state machines
 - Minimizes entry/exit latency
Qualcomm Centriq 2400 SoC Overview

L3 Cache
- Large distributed unified L3 w/ECC

DDR4 Memory
- 6 Channels w/ECC
- Bandwidth Compression: 2667 MT/s
- RDIMM, LRDIMM
- 1 or 2 DIMMs per Channel

PCle Gen3
- 32 Lanes

CPU Subsystem
- Falkor cores based on ARMv8
- 48 cores (24 duplexes)
- Unified L2 cache w/ECC

SoC
- Integrated “south bridge” features:
 - DMA, SATA, USB, I2C, UART, SPI
 - GPIO
 - SBSA Level 3 Compliant

Package
- 55mm x 55mm LGA
 - Socketed
L3 Quality of Service (QoS) Extensions

Shared Resource Contention Impacts QoS
- Distributed L3 Cache
- Limited/No Allocation Policy Enforcement for Data

QoS Extensions:
- Hardware Abstracted QoS Domain Identifier
 - Per Client (Core/Virtual Machine, IO/Virtual Function)
- Per-Resource Monitoring and Way-based Allocation
 - Monitor Utilization per QoSID per L3
 - Policy Enforcement per QoSID per L3
 - **Instruction/Data Granularity**
 - Fine-Tune Cache Allocation per Thread or Class of Threads

Improved cache utilization and per-workload performance (lower application latency) for critical workloads…..
Memory Bandwidth Compression

Constrained Memory Bandwidth
- Channel limited peak Bandwidth
- Limited number of DDR Channels

Bandwidth Compression:
• Proprietary algorithm
• Inline compression w/in Memory Controllers
 • Fully transparent to software
• Compress 128B line to 64B when possible
• ECC is encoded with compression bit
• Very low latency decompression
 • 2 – 4 cycles
• Effective on compressible bandwidth intensive workloads
• Performance improvement varies with workload characteristics

Increased effective memory bandwidth and reduced power for compressible workloads.....

Memory Access Stream – w/ Bandwidth Compression

Memory Access Stream – w/o Bandwidth Compression
Secure Boot

- Immutable Boot ROM
 - Primary Boot Loader code resident in on-chip ROM
 - Contains code to authenticate external Firmware/Software
 - Establishes Root of Trust

- Security Controller / Fuse Block
 - Selection of public key
 - Qualcomm public key (from Boot ROM)
 - OEM public key
 - Customer public key (hash)
 - Authentication of secondary and tertiary Boot Loaders

- Integrated Management Controller
 - Dedicated processor for boot sequencing
 - Authenticates and anti-rollback checks Boot Loaders
 - Accelerates SHA portion of digital signature algorithm
 - Firmware performs RSA public key operations
Qualcomm Centriq™ 2400 Processor is the industry’s first 10 nm server CPU

- 5th-generation custom core design
 - Specifically optimized for server applications
- ARMv8-compliant AArch64 only
- Targeting leading-edge Performance with Performance per Watt leadership

- Motherboard specification submitted to Open Compute Project
 - based on the latest version of Microsoft’s Project Olympus
- Running Windows Server and multiple versions of Linux
- Chip is being sampled at multiple datacenters
- On track for production by end of 2017
Thank you

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog
Glossary

- **SoC** - System-on-Chip
- **SBSA** - Server Base System Architecture
- **LGA** - Line Grid Array
- **SATA** - Serial Advanced Technology Attachment
- **USB** - Universal Serial Bus
- **I2C** - Inter-Integrated Circuit
- **UART** - Universal Asynchronous Receiver/Transmitter
- **SPI** - Shared Peripheral Interrupt
- **GPIO** - General Purpose Input Output
- **RDIMM** - Registered (Buffered) Dual Inline Memory Module
- **LRDIMM** - Load Reduced Dual Inline Memory Module
- **DDR** - Double Data Rate