Neighborhood Small Cells & UltraSON OPEN For 3G
Overview
Strong Mobile Data Demand Requires Extra Capacity

Overall Mobile Data Traffic Growth

Exabytes per Month

2011: 0.6 EB
2012: 1.3 EB
2013: 2.4 EB
2014: 4.2 EB
2015: 6.9 EB
2016: 10.8 EB

78% CAGR 2011-2016

MOBILE NETWORKS NEED TO PREPARE FOR 1000X TRAFFIC GROWTH!

Source: Cisco VNI Mobile, 2012
Small Cells & Extra Spectrum Are Critical For Reaching 1000x

MORE SPECTRUM
IN LOW AND HIGHER BANDS

MORE SMALL CELLS
EVERYWHERE!

MORE INDOOR CELLS
INSIDE-OUT DEPLOYMENT

Evolve 3G/4G/Wi-Fi
HetNets Interference Mgmt/SON
Intelligently Access 3G/4G/Wi-Fi

HIGHER EFFICIENCY
Progressive Introduction Of Small Cells To Build Dense Carrier-Grade Network

Macros

+ planned small cells

+ dense unplanned* small cells

BRING CARRIER-GRADE NETWORK CLOSER TO USER FOR NEXT LEAP OF PERFORMANCE

* Small cells will be deployed in areas of high demand without detailed RF planning.

Combined network managed by operator

Planned small cell

Unplanned small cell
A New Network Deployment Model: Hyper-dense Neighborhood Small Cells (NSC)

HIGH CAPACITY
- Significant capacity gains compared to macro-only deployment

SCALABLE DEPLOYMENT
- Minimal CapEx & OpEx
- Leverages existing premises and backhaul

INTEGRATED NETWORK
- Plug-n-play small cells with SON
- Unplanned yet operator-managed
Good Outdoor Coverage Even with Low Small Cell Penetration

- Commercial 3G small (femto) cells in a suburban neighborhood with 7% penetration on dedicated channel provides good outdoor coverage
 - 10 mW pilot TX power*

*Small cells deployed on a channel different from macrocells

RSCP [dBm]

-115 to -105
-105 to -95
-95 to -85
-85 to -75
-75 to -65
-65 to -55

- RSCP= -115dBm results in ~700kbps in thermal noise limited case
- Points with RSCP less than -115dBm is not shown on the plots
Neighborhood Small Cell OTA Network in San Diego

Live since Nov 2011

- 20 indoor sites (Dedicated spectrum, 20dBm max transmit power)
- Substantial outdoor coverage – high throughput
- Key UltraSON features for self-configuration, mobility and interference management demonstrated
Neighborhood Small Cells Overview

Capacity Gains
- Cell splitting
- SINR improvement
 - User closer to serving cell
 - Wall isolation for indoor users
- More spectrum
 - High frequency band operation

Challenges
- Mobility
 - User experience
 - Network signaling load
- Unplanned deployment / self configuration
- Shared backhaul and QoS
- Spectrum availability

Capacity Analysis

UltraSON Development
Simulation Results
Neighborhood Small Cells 3G Capacity Simulations

Baseline Vs. Dedicated Channel Deployments

Baseline Macro Deployment
Rel 9 UMTS, 2-carriers deployment with 10 MHz spectrum

Dedicated Channel Deployment
Rel 9 UMTS, total of 10 MHz spectrum macro and small cell deployed on different carriers
Dense Urban Neighborhood Small Cells Simulation

Assumptions

Parameter	Value
Macrocell ISD | 500m
Population Density | 20000 per sq km
Number of Apartments per Macrocell (2 subs per Apt.) | 720
User Distribution | 70% Indoors/30% Outdoors; Randomly dropped

Notes:

a) Small cells are randomly dropped in a apartment statistically independent of other small cells’ locations
b) At most one small cell is dropped in any apartment
Neighborhood Small Cells Capacity Simulation

Dense Urban Model Configuration

- Multi-floor apartment blocks placed in a 3-cell macro area
- Each apartment block has two buildings with a street in the middle
- 10 apartments in each floor in each building
 - Two rows of 5 apts
 - Each apt is 10m x 10m with a 1m-wide balcony
- Detailed RF propagation modeling for indoors and outdoors
 - Indoor propagation based on Keenan-Motley multi-wall model
 - Explicit modeling of internal and external walls, windows and floor losses
 - Internal wall loss: 8dB
 - External wall loss: 20dB
 - Floor loss: 18.3dB (indoor users only)
Neighborhood Small Cells Provide Significant DL Capacity Gains

Neighborhood Small Cells Offer Scalable Capacity As Demand Increases

- 500m ISD, 720 apartments/cell, 2 subs/apartment. Users randomly dropped, 70% indoor and 30% outdoor
- Gains shown are relative to macro baseline with same amount of spectrum.
- Small cell penetration is percentage of total apartments with a small cell.

DL Median Throughput Gain
(dense urban, relative to macro-only)

- 8 UEs/macro
- 48 UEs/macro
- 288 UEs/macro

Graph Details
- DL Median Throughput Gain (x)
- Small Cell Penetration (%)
- (72 small cells) (360 small cells)
- 2.4 6.3 7.4 7.5
- 37.4 21.3 34.6 38.1
- 124.8 124.8

© 2013 Qualcomm Technologies, Inc. All rights reserved.
SON Features For 3G NSC
UltraSON Features for NSC Deployments

Mobility Management
- Optimize handover performance and signaling load
 - Frequent Handover Mitigation
 - PSC selection and neighbor discovery

Radio Resource and Interference Management
- Optimize capacity and user experience via managing radio resources and interference
 - Co-channel and adjacent channel interference mitigation
 - Short-term and long-term load balancing

Tx Power Management
- Optimize network capacity while minimizing pilot pollution
 - Network Listen based Tx power management
 - UE-assisted Tx power management
 - Adaption to dynamic network topology

Backhaul Management (for consumer-grade backhaul)
- Optimize capacity offload and user experience under backhaul constraints
 - Estimate available backhaul
 - Prioritize preferred users (enterprise/residential)
SON Features Help Small Cells Deliver Carrier-Grade Performance

- In an unplanned/semi-planned deployment, RF environment around each small cell is different and dynamic
- Small cell needs to be able to respond when it is turned on and continue to adapt to the changing environment

AT STARTUP
- Calibrate Tx power
- Select PSC and configure neighbor list
- Optimize idle re-selection parameters and paging area

AFTER STARTUP
- Adapt Tx power & update neighbor list
- Monitor backhaul quality & prioritize preferred users
- Balance load among different cells
Main Considerations for Mobility Management for NSC

- Facilitate handover to small cells to maximize traffic offload
- Key Issues:
 - Mobile UEs on small cell layer likely to cross cell boundary frequently
 - Excessive handovers create signaling load and potential outage and hence should be avoided
Pilot Pollution

• Pilot pollution results in:
 – Outdoor pedestrian/vehicular users to perform many frequent handovers
 – Reduction in SNR

• Goal:
 – Minimize number of handovers for outdoor users with minimal impact on coverage

• Solution:
 – NSCs detect pilot pollution and adapt transmit power
Network Listen based Tx Power Management

- Pilot pollution can be reduced by Tx power management

- Baseline Network Listen Based Algorithm:
 - Two-tiered coverage depending on strength of nearby small cells
 - Extended coverage (high power)
 - Confined coverage (low power)
 - Power dynamically adapts to changes in network topology

Baseline Tx Power Management Algorithm

- Make NL measurements of other small cells

- Is total RSCP from small cells with P_{high} above threshold?
 - YES: Set power to P_{low}
 - NO: Set power to P_{high}
Frequent Handover Mitigation: Ping Pong Handovers

- Frequent handovers impact user experience and increase risk of call drop
- Even stationary users can experience frequent handovers when they observe many small cells with similar strength

Diagram:
- Small Cell A
- Small Cell B
- Small Cell C
- Small Cell D

Flowchart:

- **A → B → C → B → A → C**
- UE moves to D

Left Side:
- Frequent handovers: Cell ID is repeated in recent UE H/O history
- Categorize as ping-pong UE
- Adjust H/O parameters of UE to prevent ping pong

Right Side:
- Cell ID is not repeated in recent H/O history
- Categorize as non-ping pong UE
- Reset H/O parameters for that UE back to default
Frequent Handover Mitigation: High Mobility Handovers

- Fast moving users cross small cell coverage boundaries frequently and require many handovers
- These users are best served on the macro layer

Very frequent handovers
Cell IDs of past serving cells unique

Categorize as fast moving UE

Handover to macro layer
PSC Selection

- PSC re-use amongst small cells can lead to PSC collision and confusion
 - PSC pool limited by neighbor list size constraints in 3G
 - Collision results in interference
 - Confusion causes handover issues

- PSC selection needed to minimize collision and confusion
 - Avoid PSCs detected by Network Listen
 - Utilize mobiles to prevent collision/confusion with farther neighbors
Neighborhood Discovery

- Target PSC and Cell ID need to be discovered to enable handover
 - Network Listen alone cannot detect all neighboring target cells for handover
- Mobile reports can be utilized to enhance the neighbor cell list determined via Network Listen
 - Enables reliable handover from small cell to another small cell or macrocell
Backhaul Estimation

- Bandwidth available to the residence is time-varying and limited due to competition from neighbors.
- Need to ensure priority for backhaul owner traffic (both UE and non UEs).
- NSC needs to estimate available backhaul to determine how much bandwidth can be used.