

Qualcomm Technologies, Inc.

© Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

Offloading and Optimization of Adaptive Loop
Filter of H.266 (VVC) on Qualcomm® Adreno™
GPUs

80-NB295-21 Rev. AA

February 2, 2024

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 2

Revision history

Revision Date Description

AA February 2024 Initial release

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 3

Contents

1 Introduction to Adreno GPUs and OpenCL .. 6

2 Offloading ALF of VVC to GPU .. 7
2.1 What is VVC? ... 7
2.2 Why Offload to GPU? .. 7
2.3 How to Design Pipeline? ... 8
2.4 Test Environment ... 8
2.5 What Parts to Offload? ... 8

3 Optimizations ... 10
3.1 Workgroup Size Tuning ... 10
3.2 Data Type/ALU Degradation ... 11
3.3 Constant Memory ... 12
3.4 Access Pattern Simplification .. 12
3.5 Data Packing ... 13
3.6 Computation Offloading ... 14
3.7 Avoid Redundant Loads/Stores ... 14
3.8 Replace Buffer with Texture Object .. 14

4 Summary .. 16

5 Industry Demonstrations ... 18

6 Contact Us .. 19

A References ... 20

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 4

Figures

Figure 2-1 Adaptive loop filter (ALF) of H.266 (VVC) ... 9
Figure 3-1 Workgroup, workgroup size, and load/store access patterns ... 10
Figure 3-2 Workgroup size turning process .. 11
Figure 3-3 Downgrading data types .. 11
Figure 3-4 Downgrading ALU instructions (assuming c is calculated as 32 and invariant during the kernel
execution) ... 11
Figure 3-5 Promote global arrays to constant memory for preloading... 12
Figure 3-6 Moving similar access patterns into the same kernel. ... 12
Figure 3-7 Packing input and output data. .. 13
Figure 3-8 Example of data packing .. 13
Figure 3-9 Offloading arithmetic for invariants. .. 14
Figure 3-10 Avoid loading/storing zeros (shown in white boxes). .. 14
Figure 3-11 image vs buffer object ... 14
Figure 3-12 Load data with read_image ... 15
Figure 4-1 The Working Cycles after the eight optimizations ... 16

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 5

Tables

Table 2-1 Initial latency (pure CPU v.s. CPU+GPU) .. 8
Table 4-1 Summary of all optimizations ... 16

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 6

1 Introduction to Adreno GPUs and OpenCL

With the full support of the latest general purpose computing standard, OpenCL 3.0, Adreno
GPUs in Snapdragon® SoCs allow developers to fully leverage the GPU computing power without
prior knowledge of graphics APIs. Meticulously designed OpenCL applications can take advantage
of the full computing power of Adreno GPUs and run concurrently with graphics applications
without affecting graphics rendering tasks such as UI. OpenCL on Snapdragon has been highly
successful since its debut more than a decade ago: many smartphones powered by Snapdragon
SOCs have OpenCL applications running behind the scenes for image, video, or compute vision,
or machine learning workload.

To know more about how to develop, optimize, and profile OpenCL on Adreno GPUs, please
refer to the latest OpenCL programming guide at
https://developer.qualcomm.com/qfile/33472/80-nb295-11_a.pdf, and the Adreno OpenCL SDK at
https://developer.qualcomm.com/software/adreno-gpu-sdk. In addition, blogs on how to
optimize OpenCL on Snapdragon SOCs using specific examples are available at
https://developer.qualcomm.com/blog/opencl-optimization-stop-leaving-compute-cycles-table,
https://developer.qualcomm.com/blog/opencl-optimization-accelerating-sobel-filter-adreno-gpu, and
https://developer.qualcomm.com/blog/accelerate-your-models-our-opencl-ml-sdk. There are also
video tutorials available, e.g., https://www.youtube.com/watch?v=P0ljnmRIHJw.

https://developer.qualcomm.com/qfile/33472/80-nb295-11_a.pdf
https://developer.qualcomm.com/software/adreno-gpu-sdk
https://developer.qualcomm.com/blog/opencl-optimization-stop-leaving-compute-cycles-table
https://developer.qualcomm.com/blog/opencl-optimization-accelerating-sobel-filter-adreno-gpu
https://developer.qualcomm.com/blog/accelerate-your-models-our-opencl-ml-sdk
https://www.youtube.com/watch?v=P0ljnmRIHJw

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 7

2 Offloading ALF of VVC to GPU

2.1 What is VVC?

Versatile Video Coding (VCC/H.266) is a video standard finalized by the JVET in 2020. As a
successor to the successful video codec, HEVC/H.265, VCC targets both compression efficiency
and a broad range of applications. As of today, a software-based VCC decoder is the only viable
solution on smartphone as the hardware-based decoder is not available due to a range of factors.
The hardware accelerated VCC decoder on Snapdragon is in progress.

2.2 Why Offload to GPU?

It is natural to offload parts of the VVC to Adeno using OpenCL so that the VVC decoder takes
full advantage of the computing power of a SoC. As VVC is very computationally demanding.
GPU is a particularly excellent choice to offload the workload thanks to the following
considerations:

1. Adreno GPU supports OpenCL.

a. OpenCL is easy to program, debug, and profile thanks to all the resources available for
Adreno, including Adreno OpenCL programming guide, Snapdragon profiler/debugger,
and Adreno SDK examples.

b. OpenCL has exceptionally good portability as all mainstream GPU vendors have adopted
it.

c. Many vendor extensions are available to allow developers to fully leverage Adreno’s
advanced features.

2. Adreno has superior computing power vs CPU.

a. Adreno in premium tier SoCs features massive parallel SIMD computing engines.

b. Adreno shares the same memory bandwidth as CPU and support the full 64-bit memory
addressing.

c. Adreno supports a wide variety of data types natively, including FP32, FP16, INT32, INT16,
and INT8 (dot product), etc.

d. Its FP16’s peak performance is twice of FP32’s.

3. Adreno offers superior power/energy performance advantage vs CPU.

a. Adreno is usually running at much lower clock rates than CPU.

b. Adreno has advanced mechanism to lower clock rates to conserve power if necessary.

c. Adreno has on-chip memory and large cache that reduces memory traffic to the system
memory.

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Offloading ALF of VVC to GPU

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 8

2.3 How to Design Pipeline?

The partition of the workloads to CPU and GPU in a software decoder should follow the following
guidelines:

1. The pipeline should be designed to minimize the synchronization overhead between CPU
and GPU.

a. Pipeline should avoid excessive wait between CPU and GPU.

b. Ideally, they should reach the same point without redundant wait time.

2. The utilization of the cores should be as high as possible.

a. The workload of a portion cannot be too small, as GPU is good at handling massive parallel
data processing tasks while not good at handling too many small workloads.

b. GPU has a software layer that roughly takes the same account of time regardless of the
size of a workload. As a result, too many small workloads incur excessive software
overhead as well as lower GPU’s utilization.

c. The decoding of a frame can be divided into multiple portions/lines and within each
portion/line, CPU and GPU should work in a pipelining fashion.

2.4 Test Environment

Tencent266Dec, an in-house developed real-time VVC decoder by Tencent, is designed to
support a variety of platforms, including PCs and mobile devices[1,2], and was customized and
optimized for GPU based heterogeneous optimization, which served as the code base of this
guideline and related industry demonstration. For instance, the line-based filter process enables
simultaneous operation of the GPU and CPU, effectively masking runtime latency.

In this guideline, we will briefly outline the collaborative optimization efforts for H.266/VVC
between Qualcomm and Tencent, providing guidance on GPU heterogeneous optimization.
Owing to Tencent266Dec's real-time decoding performance plus the huge speedup from
heterogeneous optimization, the world’s first 4K10bit60fps VVC playback on Qualcomm Soc was
demonstrated in ChinaJoy 2023. The test results in the following sections are also based on
Tencent266Dec. For other H.266/VVC decoders, developers can utilize the methods described to
optimize their H.266/VVC decoders for heterogeneous acceleration.

2.5 What Parts to Offload?

After reviewing the whole pipeline of VVC, the adaptive loop filter (ALF) in VVC is a natural choice
for offloading into GPU, as this part is relatively more parallel friendly than the other stages in
VVC and the workload itself is reasonably heavy for GPU processing. Therefore, ALF is used in this
document to illustrate the OpenCL optimizations. This does not exclude the possibility of offloading
other parts of VCC into GPU, e.g., interpolation filtering.

We started with an initial version of ALF that is far from optimized, as shown in the following table,
that the GPU version is even slower than the CPU version.

Table 2-1 Initial latency (pure CPU v.s. CPU+GPU)

 CPU CPU + GPU

single-frame 68ms 280ms

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Offloading ALF of VVC to GPU

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 9

As shown in the following figure, there are three steps in the ALF using three GPU kernels (K1,
K2, and K3). We will give an overview of key optimizations without too many low-level details.

Figure 2-1 Adaptive loop filter (ALF) of H.266 (VVC)

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 10

3 Optimizations

This section presents the major OpenCL optimizations that we have done to achieve the
performance target. We assume by now the developers should have read thoroughly the Adreno
OpenCL
Programming Guide, and have firsthand experience and feel comfortable on development,
debugging, and profiling of OpenCL applications.

Developers need to be aware that the optimization of an OpenCL application has multiple levels,
including algorithm level, host/API level, and kernel level optimization, and typically requires
multiple rounds of trials and errors to achieve the performance target.

In this document, we focus on kernel optimizations. Before diving into details, one API level
feature we like to highlight is an extension called recordable command queue, an OpenCL vendor
extension recently created for Adreno. The extension is to record a serial of OpenCL kernel calls
and then replay for the following workload that has the same set of OpenCL kernel calls with
minor changes, such as kernels parameters. It is an extremely useful feature as the extension
significantly reduces the software overhead for repetitive data processing like streamed video
data processing. Please refer to the Adreno OpenCL programming guide and SDK for more
details.

3.1 Workgroup Size Tuning

Tuning of workgroupsize is extremely important: each optimization described in this document
should come with a new round of workgroup size tuning. Please refer to the programming guide
on why tuning is important.

Figure 3-1 Workgroup, workgroup size, and load/store access patterns

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Optimizations

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 11

Figure 3-2 Workgroup size turning process

Figure 3-1 shows an example of load/store patterns(red boxes) and workitems in the middle. A
grid scan on all WG sizes is shown in Figure 3-2.

3.2 Data Type/ALU Degradation

Data types are extremely important as, (1) it affects the memory traffic between memory and
GPU, and (2) the computing capabilities of Adreno GPUs may vary based on different data types.

Figure 3-3 Downgrading data types

By using shorter data type for the arguments, input buffer, and many other variables, we were
able to improve the parallel efficiency (reduced register footprint) and increase the ALU
throughputs.

Figure 3-4 Downgrading ALU instructions (assuming c is calculated as 32 and invariant
during the kernel execution)

Converting arithmetic to bit-wise operations and changing control flows to conditional operator
ternary also benefit the performance significantly.

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Optimizations

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 12

3.3 Constant Memory

Figure 3-5 Promote global arrays to constant memory for preloading

Taking advantage of the broadcasting and preloading of constant member with an attribute,
max_const_size dramatically improve performance. For example, ctu_enable_flag_buffer
was a char array of length 510 bytes, which can be preloaded into constant memory which
reduces data traffic and improve ALU utilization.

3.4 Access Pattern Simplification

Figure 3-6 Moving similar access patterns into the same kernel.

As shown on the left of Figure 3-6, we found the access pattern of the Laplacian matrix
accumulation in K1 was similar to the one in K2 while using the Laplacian matrix, so we move the
accumulation to K2 to simplify K1’s data access pattern for better cache hit rate. This allows K1 to
use larger WG size to fully utilize shaders without increasing cache thrashing.

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Optimizations

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 13

3.5 Data Packing

Figure 3-7 Packing input and output data.

Figure 3-7 shows the process of packing more workload into a single workitem. Better data
packing improves the ALU utilization based on the Snapdragon profiler.

The following figure illustrates a toy example to pack four workitems’ workload into one by loading
twelve pixels and storing four output pixels at once.

Figure 3-8 Example of data packing

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Optimizations

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 14

3.6 Computation Offloading

Figure 3-9 Offloading arithmetic for invariants.

As shown in Figure 3-9, Identifying the computation of invariants and offloading them to CPU saved
unnecessary computing cycles for GPUs.

3.7 Avoid Redundant Loads/Stores

Figure 3-10 Avoid loading/storing zeros (shown in white boxes).

By studying the algorithm, we found that the pixels with real values in the Laplacian matrix have
considerable number of zero pixels around. Removing these zeros greatly reduces memory traffic
between global memory and GPU.

3.8 Replace Buffer with Texture Object

Figure 3-11 image vs buffer object

The initial kernel loaded all data using buffer objects, which provides flexibility for arbitrary
indexing. However, the access patterns of some input arrays of K3 are aligned every four pixels
and using texture instead of buffer leads to better performance as texture can leverage the L1
cache.

L1 Hit L2 Hit
L2 Miss

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Optimizations

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 15

The following figure shows the in-kernel modification.

Figure 3-12 Load data with read_image

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 16

4 Summary

Based on the test environment Tencent266Dec, Offloading ALF into GPU in VVC shows that
averaged latency on multi-frame streams achieved 17.4% to 23.87% perf uplift as compared
against a pure CPU implementation (for the whole frame decoding).

Figure 4-1 The Working Cycles after the eight optimizations

Throughout the optimizations, we profiled the kernels to understand the impact of each
modification and verified whether the benefit reflected our knowledge and intention. Figure 4-1
shows a profiling results of the steps.

The following table lists all optimizations and their impacts we explored with Tencent266Dec as
code base.

Table 4-1 Summary of all optimizations

 Description Impact

1 wgTune Workgroup size tuning 81.6%
2 dtypeRedu Downgrading datatypes 43.6%
3 constMem Promoting small buffers to constant memory 21.2%
4 k1k2Xch Simplifying K1 access pattern by moving the last block

of K1 to K2
27.6%

5.1 vload Working toward data packing. Applying vload and
vstore for adjacent pixels’ load/store.

(accumulated to 5.3)

5.2 vload4 Replacing vload3 with vload4, vstore3 with vstore4. (accumulated to 5.3)
5.3 dataPacking Packing multiple workitems’ workloads into one. 19.4%

Offloading and Optimization of Adaptive Loop Filter of H.266 (VVC) on Qualcomm® Adreno™ GPUs Summary

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 17

 Description Impact
6 offload Combining dependent invariants and offloading some

computations to CPU.
5.2%

7 squeezing Avoid loading/storing zeros in K1 and K2 37.2%
8 image1d Texturizing K3’s input buffers. 30.8%

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 18

5 Industry Demonstrations

Upon the implementation of GPU heterogeneous optimization, Qualcomm & Tencent have also
developed a real-time 4K H.266/VVC player based on Tencent266Dec, utilizing the Adreno GPU
on a Snapdragon 8 Gen 2 mobile processor. This H.266/VVC player can support stable, real-time
playback of ultra-high-definition VVC content at 4K 10-bit 60 frames per second (FPS). It was
showcased at ChinaJoy 2023 and International Broadcasting Convention (IBC) 2023. More
details can be found in [3].

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 19

6 Contact Us

For further information or if you have any questions, please contact us by:

https://support.qualcomm.com/

Tencent Media Lab

medialab@tencent.com

https://support.qualcomm.com/

80-NB295-21 Rev. AA May contain U.S. and international export controlled information 20

A References

[1]. Y. Li, S. Liu, Y. Chen, Y. Zheng, S. Chen, B. Zhu and J. Lou, "An optimized H. 266/VVC
software decoder on mobile platform." 2021 Picture Coding Symposium (PCS). IEEE, 2021.

[2]. B. Zhu, S. Liu, X. Xu, X. Zhang, C. Gu, L. Wang, W. Feng, “Performance of a VVC software
decoder,” ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 document JVET-T0095,
teleconference, October, 2020.

[3]. https://www.qualcomm.com/news/onq/2023/07/the-end-of-video-buffering-are-we-there-yet,
2023

https://www.qualcomm.com/news/onq/2023/07/the-end-of-video-buffering-are-we-there-yet,%202023
https://www.qualcomm.com/news/onq/2023/07/the-end-of-video-buffering-are-we-there-yet,%202023

LEGAL INFORMATION

Your access to and use of this material, along with any documents, software, specifications, reference board files, drawings, diagnostics and other
information contained herein (collectively this “Material”), is subject to your (including the corporation or other legal entity you represent,
collectively “You” or “Your”) acceptance of the terms and conditions (“Terms of Use”) set forth below. If You do not agree to these Terms of Use,
you may not use this Material and shall immediately destroy any copy thereof.

1) Legal Notice.
This Material is being made available to You solely for Your internal use with those products and service offerings of Qualcomm Technologies, Inc.
(“Qualcomm Technologies”), its affiliates and/or licensors described in this Material, and shall not be used for any other purposes. If this Material is
marked as “Qualcomm Internal Use Only”, no license is granted to You herein, and You must immediately (a) destroy or return this Material to
Qualcomm Technologies, and (b) report Your receipt of this Material to qualcomm.support@qti.qualcomm.com. This Material may not be altered,
edited, or modified in any way without Qualcomm Technologies’ prior written approval. Unauthorized use or disclosure of this Material or the
information contained herein is strictly prohibited, and You agree to indemnify Qualcomm Technologies, its affiliates and licensors for any damages
or losses suffered by Qualcomm Technologies, its affiliates and/or licensors for any such unauthorized uses or disclosures of this Material, in whole
or part.

Qualcomm Technologies, its affiliates and/or licensors retain all rights and ownership in and to this Material. No license to any trademark, patent,
copyright, mask work protection right or any other intellectual property right is either granted or implied by this Material or any information disclosed
herein, including, but not limited to, any license to make, use, import or sell any product, service or technology offering embodying any of the
information in this Material.

THIS MATERIAL IS BEING PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE. TO
THE MAXIMUM EXTENT PERMITTED BY LAW, QUALCOMM TECHNOLOGIES, ITS AFFILIATES AND/OR LICENSORS SPECIFICALLY DISCLAIM ALL
WARRANTIES OF TITLE, MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, COMPLETENESS
OR ACCURACY, AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE.
MOREOVER, NEITHER QUALCOMM TECHNOLOGIES, NOR ANY OF ITS AFFILIATES AND/OR LICENSORS, SHALL BE LIABLE TO YOU OR ANY THIRD PARTY
FOR ANY EXPENSES, LOSSES, USE, OR ACTIONS HOWSOEVER INCURRED OR UNDERTAKEN BY YOU IN RELIANCE ON THIS MATERIAL.

Certain product kits, tools and other items referenced in this Material may require You to accept additional terms and conditions before accessing
or using those items.

Technical data specified in this Material may be subject to U.S. and other applicable export control laws. Transmission contrary to U.S. and any other
applicable law is strictly prohibited.

Nothing in this Material is an offer to sell any of the components or devices referenced herein.

This Material is subject to change without further notification.

In the event of a conflict between these Terms of Use and the Website Terms of Use on www.qualcomm.com or the Qualcomm Privacy Policy
referenced on www.qualcomm.com, these Terms of Use will control. In the event of a conflict between these Terms of Use and any other agreement
(written or click-through, including, without limitation any non-disclosure agreement) executed by You and Qualcomm Technologies or a Qualcomm
Technologies affiliate and/or licensor with respect to Your access to and use of this Material, the other agreement will control.

These Terms of Use shall be governed by and construed and enforced in accordance with the laws of the State of California, excluding the U.N.
Convention on International Sale of Goods, without regard to conflict of laws principles. Any dispute, claim or controversy arising out of or relating
to these Terms of Use, or the breach or validity hereof, shall be adjudicated only by a court of competent jurisdiction in the county of San Diego,
State of California, and You hereby consent to the personal jurisdiction of such courts for that purpose.

2) Trademark and Product Attribution Statements.
Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Arm is a registered trademark of Arm Limited (or its subsidiaries) in
the U.S. and/or elsewhere. The Bluetooth® word mark is a registered trademark owned by Bluetooth SIG, Inc. Other product and brand names
referenced in this Material may be trademarks or registered trademarks of their respective owners.

Snapdragon and Qualcomm branded products referenced in this Material are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
Qualcomm patented technologies are licensed by Qualcomm Incorporated.

mailto:qualcomm.support@qti.qualcomm.com
http://www.qualcomm.com/
http://www.qualcomm.com/

	1 Introduction to Adreno GPUs and OpenCL
	2 Offloading ALF of VVC to GPU
	2.1 What is VVC?
	2.2 Why Offload to GPU?
	2.3 How to Design Pipeline?
	2.4 Test Environment
	2.5 What Parts to Offload?

	3 Optimizations
	3.1 Workgroup Size Tuning
	3.2 Data Type/ALU Degradation
	3.3 Constant Memory
	3.4 Access Pattern Simplification
	3.5 Data Packing
	3.6 Computation Offloading
	3.7 Avoid Redundant Loads/Stores
	3.8 Replace Buffer with Texture Object

	4 Summary
	5 Industry Demonstrations
	6 Contact Us
	A References

