

Dense 3D scene flow estimation for locally rigid scenes

Konrad Schindler

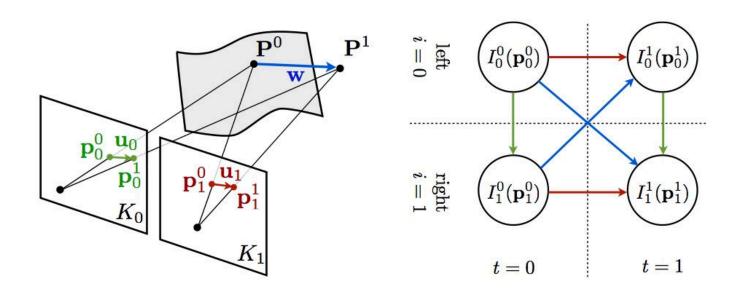
Photogrammetry and Remote Sensing, ETH Zürich

3D Scene Flow

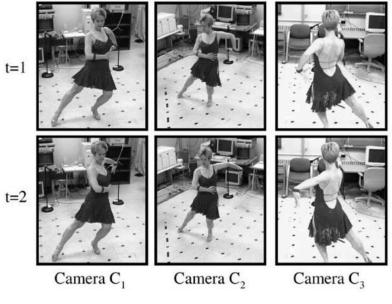

- "Joint stereo and optical flow"
- Given ≥2 video frames from ≥2 different viewpoints

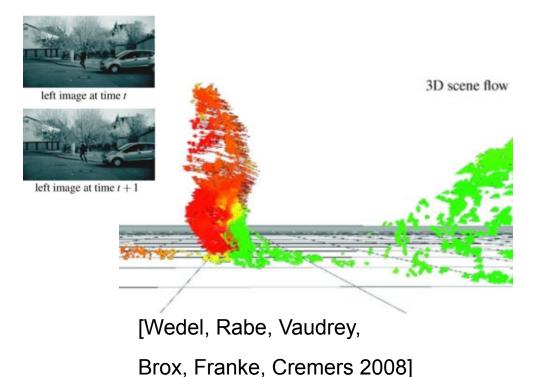
3D Scene Flow

- "Joint stereo and optical flow"
- Given ≥2 video frames from ≥2 different viewpoints
- Estimate dense 3D shape and 3D motion field



3D Scene Flow


- 4 unknowns per point: depth + 3D motion vector
- stereo/flow constraints between any two images
- (for simplicity, will refer to the 2-view case in the talk)



Applications

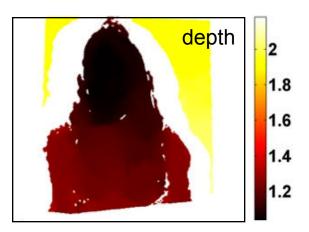
- Entertainment, 3D TV
- Motion capture
- Driver assistance, autonomous robots

[Vedula, Baker, Rander, Collins, Kanade 1999]

Estimation

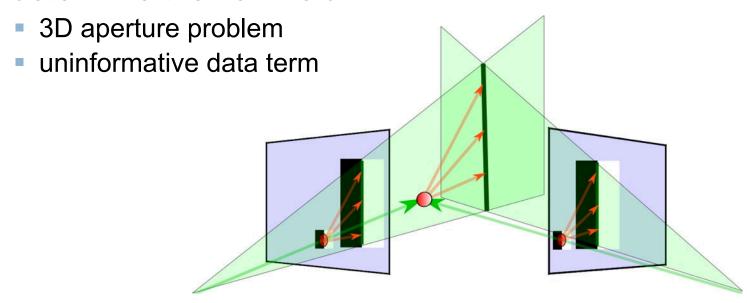
- First 2D flow, then stereo
- First stereo, then 2D flow
- Everything jointly

[Vedula et al. 1999]


[Pons, Keriven, Faugeras 2007] [Wedel et al. 2008]

[Huguet, Devernay 2007] [Basha, Moses, Kiryati 2010]

Usually parametrized w.r.t. a reference image



Scene Flow is ill-posed

- Available constraint (data term): the flow field should be compatible with all observed images
 - e.g. brightness constancy, cross-correlation, Census, ...
- Like for stereo and optical flow, this is insufficient to determine the flow field

Standard regularization

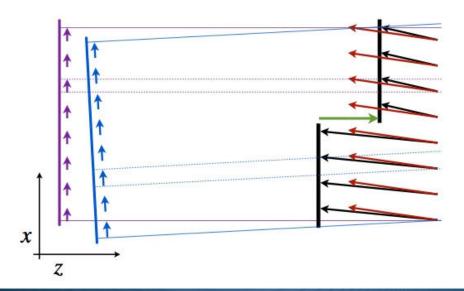
surface / motion field is piecewise smooth

$$\hat{\mathbf{u}} = \operatorname{argmin} E(\mathbf{u}) \quad , \quad E(\mathbf{u}) = E_{data}(\mathbf{u}) + \lambda \cdot E_{smooth}(\mathbf{u})$$

 robust penalty to allow for discontinuities, e.g. total variation (TV-L1)

$$E_{data} = \int \rho(\nabla \mathbf{u}) d\mathbf{x}$$
 , $\rho(\nabla \mathbf{u}) = |\nabla \mathbf{u}|$

widely used in stereo and optical flow estimation



TV-L1 applied to 3D scene flow

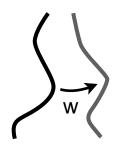
Total variation of depth and motion field

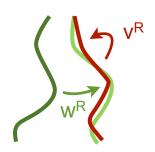
$$E_S^{\text{TV}}\!(d, \mathbf{w}) = \int_{\Omega} \!\! \rho(\nabla d) \!\!+\!\! \rho(\nabla w_x) \!\!+\!\! \rho(\nabla w_y) \!\!+\!\! \rho(\nabla w_z) \mathrm{d}\mathbf{x}$$

- Does not work well for narrow baselines
- Isotropic smoothing is biased against depth discontinuities

Rigidity

- Observation: many scenes of practical importance consist of relatively few rigid, independently moving parts
- Develop a regularizer that encourages rigidity rather than smoothness



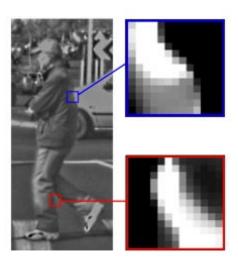


Attempt 1 - local rigidity

- For each scene point, penalize the deviation from rigidity
 - look at a small patch around the point
 - find the "non-rigid motion residual", i.e. the difference between the observed motion and its projection onto the rigid motion subspace
 - smoothness term is a robust function of this residual

$$E_S^R(\mathbf{w}) = \int_{\Omega} \psi(v^R(\mathbf{x}; \mathbf{w})) d\mathbf{x}$$
$$v^R(\mathbf{x}; \mathbf{w}) = \int_{\mathcal{C}(\mathbf{x})} ||\mathbf{r}(\mathbf{y}; \mathbf{w}|_{\mathcal{C}(\mathbf{x})}) - \mathbf{w}(\mathbf{y})||_2^2 \eta(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

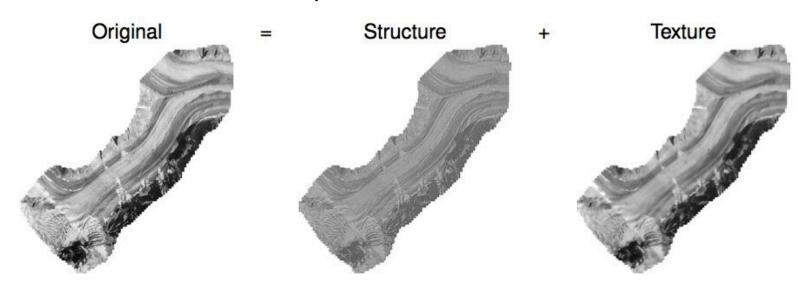
[Vogel, Roth, Schindler ICCV'11]


Local rigidity

- For small motions this can be done quite efficiently
 - linearize rotation, discretize to pixel grid
 - non-rigid motion residual has linear closed form
 - it is not necessary to explicitly compute the rigid motion

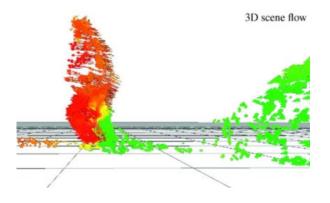
$$E_S^R(\mathbf{w}) = \sum_{c \in C} \psi\left(v_{ ext{dsc}}^R(c; \mathbf{w})\right) \qquad \qquad R pprox I + \alpha[\mathbf{r}]_{ imes}$$

$$v_{\mathrm{dsc}}^{R}(c; \mathbf{w}) = \left\| A_{c} \mathbf{w}_{(c)} - \mathbf{w}_{(c)} \right\|_{N_{c}}^{2}$$


 Pixels in the patch are weighted to avoid fitting across depth and motion boundaries

Inference

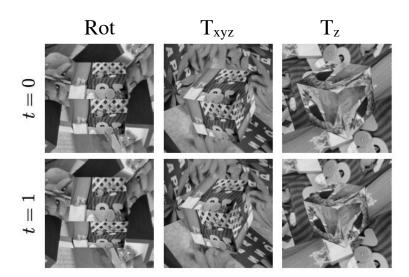
- variational energy minimization
- usual tricks from optical flow can (and should) be used
 - auxiliary dual variables to decouple data and smoothness terms
 - course-to-fine scheme
 - careful gradient interpolation
 - structure-texture decomposition



Evaluating scene flow

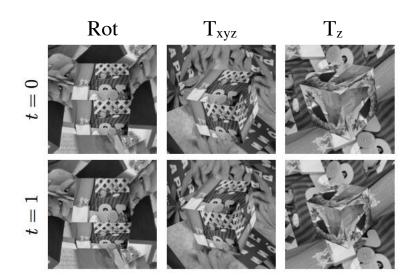
Ground truth

- no easy way to obtain dense ground truth
- no existing benchmark data
- quantitative results only for synthetic scenes
- (note, some public ground truth is wrong)

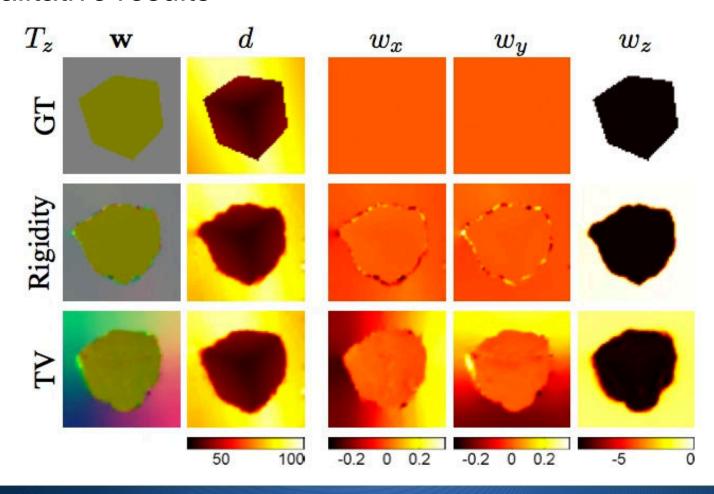


Error measures

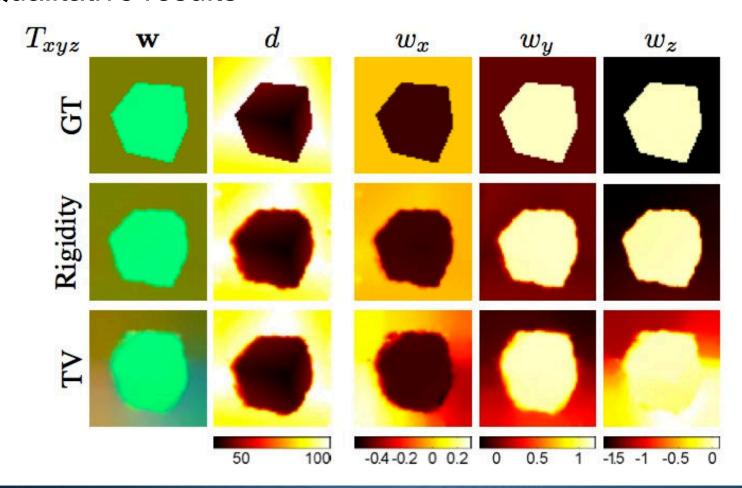
- angular error of 3D flow component
- RMS of depth, normalized to scene extent
- RMS of flow, normalized to scene extent
- 2D angular of reprojected 2D flow field
- 2D endpoint error of reprojected flow field


 Synthetic scenes with known ground truth

			3D Error		2D E	RROR	
SCENE		$AAE_{\mathbf{w}}$	$NRMS_{\mathbf{w}}$	$NRMS_d$	AAE	AEP	
Rot	Rig	4.5°	7.3%	11.7 %	1.6°	0.36	
	TV	8.5°	9.8%	11.6%	1.7°	0.35	
T_{xyz}	Rig	2.5°	11.9%	11.8 %	1.5°	0.39	
100	TV	8.6°	25.6 %	11.7%	2.3°	0.42	
T_z	Rig	3.9°	14.0%	9.9%	1.8°	0.35	
	TV	7.8°	15.3%	10.7 %	2.4°	0.37	


 Synthetic scenes with known ground truth

			AAE	v [°]	NRMS _w [%]						
SCENE		_	OC	OC&DC	_	OC	OC&DC				
Rot	Rig	4.5	4.1	3.3	7.3	6.7	4.5				
	TV	8.5	8.2	7.4	9.8	9.4	7.9				
T_{xyz}	Rig	2.5	2.1	1.5	11.9	10.3	6.4				
Ē	TV	8.6	8.0	7.7	25.6	24.4	23.6				
T_z	Rig	3.9	2.5	1.2	14.0	10.6	5.0				
	TV	7.8	6.5	4.9	15.3	13.3	8.2				



Qualitative results



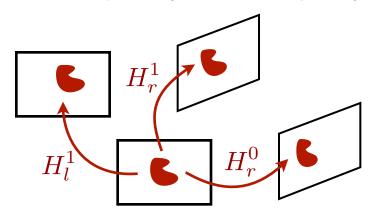
Qualitative results

Stereo camera on car

Maria (three views)

Attempt 2 - piecewise planarity and rigidity

- Explicitly model scene as a collection of planar patches
- Recent trend in both
 - stereo [e.g. Bleyer et al. 2011] and
 - optical flow [e.g. Sun, Sudderth, Black 2010]

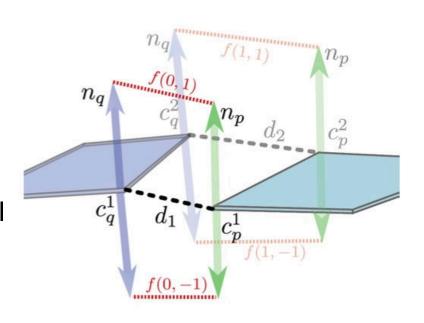


[Bleyer, Gelautz, Rother, Rhemann 2009]

Piecewise planarity and rigidity

- For 3D scene flow, represent scene as a collection of rigidly moving planes
- Why that?
 - a good approximation for most object surfaces
 - stronger regularization
 - large, well-delineated support regions for estimation
 - simple mapping with homographies
 - (potential for implicit (or even explicit) object segmentation)

[Vogel, Roth, Schindler ICCV'13]

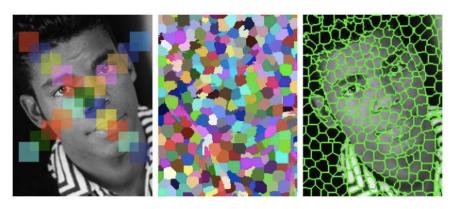


Energy

 In addition to data fidelity and smoothness, encourage "good" segmentation

$$E(\mathcal{P}, \mathcal{S}) = E_D(\mathcal{P}, \mathcal{S}) + \lambda E_R(\mathcal{P}, \mathcal{S}) + \mu E_S(\mathcal{S})$$

- Data term
 - two optical flow pairs
 - two stereo pairs
- Smoothness at boundary pixels
 - 3D distances between patches small
 - curvature small (computed from distances of auxiliary points)



Segmentation regularization

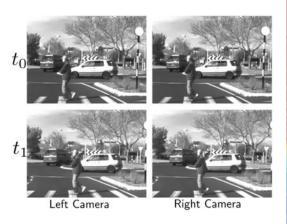
- Segments should be spatially coherent (≠ compact)
- Suitable models exist in energy-based segmentation
 - Potts model to encourage segment boundaries at high gradients
 - allow only assignments to nearby segments

$$E_{S}(\mathcal{S}) = \sum_{\substack{(\mathbf{p}, \mathbf{q}) \in \mathcal{N}, \\ S(\mathbf{p}) \neq S(\mathbf{q})}} \exp\left(\frac{-a|I_{l}^{0}(\mathbf{p}) - I_{l}^{0}(\mathbf{q})|}{\sigma_{I}(\mathbf{p}, \mathbf{q}) + \epsilon}\right) + \sum_{\mathbf{p} \in I_{l}^{0}} \begin{cases} 0, & \exists \, \mathbf{e} \in \mathcal{E}(s_{i}) : ||\mathbf{e} - \mathbf{p}||_{\infty} < N_{S} \\ \infty, & \text{else.} \end{cases}$$


[Veksler, Boykov, Mehrani 2010]

Inference

- Initial segmentation based only on intensity
- Compute multiple scene flow proposals for each segment
 - run simpler scene flow, 2D flow + stereo
 - fit rigidly moving planes to segments



Inference

- Assign each segment to one of the proposals
 - minimize energy function over all pixels of all segments
 - α-expansion with QPBO

Occlusions

- Scene flow is 3D, allows for explicit occlusion modeling
 - occluded pixels do not pay a data penalty
 - instead they are assigned a fixed occlusion penalty
- Integration into inference scheme
 - in each binary expansion step, find cases "if super-pixel p is on plane X and super-pixel q is on plane Y, then p occludes q"
 - there can be >1 segments on the line of sight to q → higher-order cliques
 - reduce to binary cliques with auxiliary variables (carefully, to introduce few non-submodular cliques)

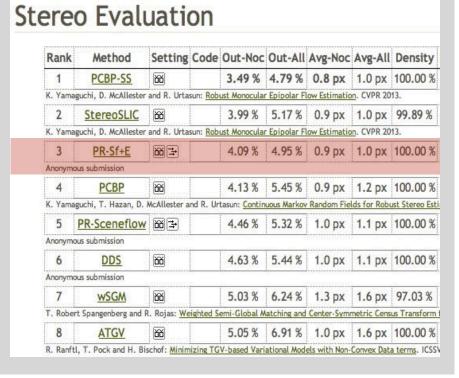
Inference

- Estimate segment-level occlusions
 - include occlusion potentials
 - solve assignment again



Inference

- Keep plane parameters fixed, reassign pixels to segments
 - simpler now, because only few segments within the allowed distance
- (iterate)



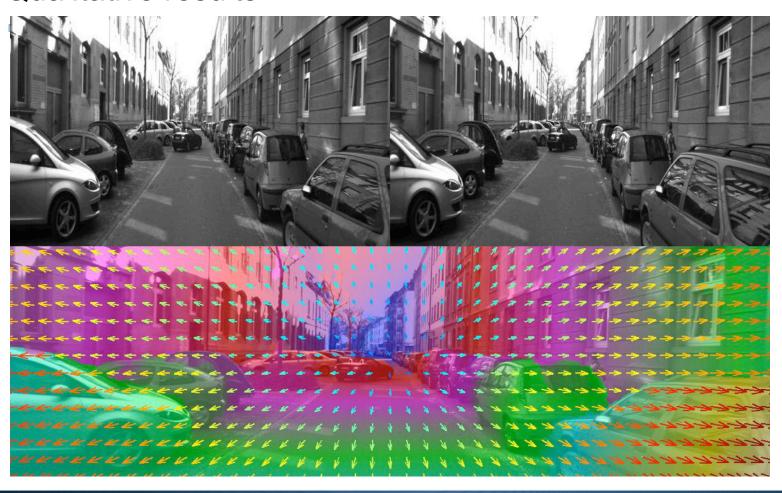
- Quantitative results
 - KITTI flow+stereo benchmark
 - errors of reprojected 2D disparity/flow (no other ground truth)

is tab	le ranks genera	l optical	flow n	nethods,	perform	ing a full	2D searc	ch, as co
Rank	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density
1	PR-Sf+E	89 1		4.08 %	7.79 %	0.9 px	1.7 px	100.00 9
Anonym	ous submission		100 00				i	!
2	PCBP-Flow	∌ ₩		4.08 %	8.70 %	0.9 px	2.2 px	100.00 9
K. Yama	aguchi, D. McAllester	and R. Urtas	un: Robus	st Monocular I	pipolar Flo	w Estimation.	CVPR 2013	
3	MotionSLIC	学米		4.36 %	10.91 %	1.0 px	2.7 px	100.00 9
K. Yama	aguchi, D. McAllester	and R. Urtas	un: Robus	st Monocular I	pipolar Flo	w Estimation.	CVPR 2013	
4	PR-Sceneflow	<u>88</u> 3		4.48 %	8.98 %	1.3 px	3.3 px	100.00 9
Anonym	ous submission							*
5	TGV2ADCSIFT	≟		6.55 %	15.35 %	1.6 px	4.5 px	100.00 9
6	Data-Flow	⇒		7.47 %	14.85 %	1.9 px	5.5 px	100.00 9
C. Voge	l, S. Roth and K. Schir	ndler: An Eva	luation o	of Data Costs	for Optical I	low. German	Conference	e on Pattern
7	DeepMatching	≟		8.04 %	18.60 %	1.6 px	5.7 px	100.00 9
Anonym	ous submission				······································			
8	TVL1-HOG	□		8.31 %	19.21 %	2.0 px	6.1 px	100.00 9

- Comparison
 - other 3D scene flow algorithms
 - intermediate stages and variants of the framework

	FLOW (All)				FLOW (Noc)			STEREO(All)				STEREO (Noc)				
Error threshold Z	2	3	4	5	2	3	4	5	2	3	4	5	2	3	4	5
LSF [3]	21.6	16.9	14.3	12.7	16.0	12.0	10.0	8.8	17.6	12.0	9.0	7.2	16.4	10.8	8.0	6.3
Rig [24]	16.1	12.1	10.1	8.8	10.6	7.3	5.7	4.8	15.0	10.6	8.3	6.8	13.7	9.5	7.2	5.8
2D [11, 26]	18.9	15.0	12.8	11.3	11.0	7.9	6.5	5.7	13.5	9.9	8.0	6.7	12.3	8.9	7.0	5.8
PRSSeg-3D	13.8	10.1	8.2	7.1	8.4	5.6	4.5	3.9	9.4	6.8	5.4	4.6	8.4	6.0	4.8	4.0
PRSPix-3D	12.8	9.3	7.6	6.6	7.2	4.7	3.7	3.2	8.1	5.8	4.6	3.9	7.1	5.0	4.0	3.3
PRSSeg-2D	12.4	9.0	7.3	6.4	7.4	5.0	3.9	3.4	8.9	6.4	5.1	4.3	7.9	5.6	4.4	3.7
PRSPix-2D	11.8	8.5	6.9	6.0	6.9	4.5	3.5	3.0	8.3	5.9	4.7	3.9	7.3	5.1	4.0	3.3
PRSPix-O-2D	11.2	7.7	5.9	5.1	6.8	4.4	3.3	2.8	8.3	5.9	4.7	4.0	7.4	5.2	4.1	3.4
PRSPix-2D+R	10.9	7.6	6.0	5.1	6.3	4.1	3.1	2.7	7.9	5.7	4.5	3.8	6.9	4.8	3.8	3.2
PRSPix-2D+R+E	10.0	6.7	5.0	4.1	5.8	3.6	2.7	2.2	7.4	5.3	4.2	3.5	6.4	4.5	3.6	3.0

Qualitative results



Qualitative results

Summary and Outlook

- Does rigidity help? Yes!
 - we believe it is the best regularizer for scene flow thus far
- Local or piecewise rigidity? Hard to say;
 - obviously depends on the scene "horses for courses"
 - in practice piecewise so far works much better
- Something obvious missing? Yes!
 - >2 time steps must be beneficial (although notoriously hard to show)
 - rigidity should benefit more than agnostic smoothing
- Is rigidity the final word? No!
 - scene flow is still in its infancy compared to mature computer vision problems (stereo, flow, SfM, categorization...)
 - we as a community can certainly do a lot better; a good area if you want to make an impact ;-)

Cast listing

Christoph Vogel

Stefan Roth

Konrad Schindler

ECCV 2014 - European Conference on Computer Vision

Zurich, September 5-12, 2014

HOME

IMPORTANT DATES

LOCAL ARRANGEMENT

PEOPLE

Important Dates

- ECCV 2014 Submission Deadline: 7 March 2014 Friday
- ECCV 2014 Supplementary Materials Deadline: 14 March 2014 Friday
- ECCV 2014 Announcement of Decisions: 16 June 2014 Monday

Photogrammetric Computer Vision - PCV 2014

ISPRS Technical Commission III Midterm Symposium 5th - 7th September 2014, Zurich, Switzerland

In Conjunction with the European Conference on Computer Vision

Home

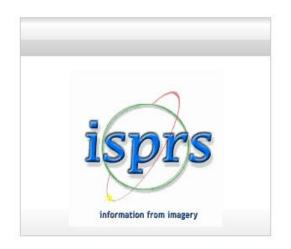
People

Program

Submission

Important Dates

ECCV 2014



Important dates

- submission deadline for ISPRS Annals (full paper peer-review)
- submission deadline for ISPRS Archives (abstract review)

13 April 2014

19 June 2014

